Ensembles in Machine Learning Applications

This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD...

Full description

Saved in:
Bibliographic Details
Main Author: Okun, Oleg
Corporate Author: SpringerLink (Online service)
Other Authors: Valentini, Giorgio, Re, Matteo
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Series:Studies in computational intelligence ; v. 373.
Subjects:
Online Access:Full text (Wentworth users only).

MARC

LEADER 00000cam a22000005i 4500
001 045ddeb9-0f6b-43b7-8e68-6e4ac32bd0b9
005 20240722000000.0
008 110830s2011 gw | s |||| 0|eng d
020 |a 9783642229107  |9 978-3-642-22910-7 
024 7 |a 10.1007/978-3-642-22910-7  |2 doi 
035 |a (DE-He213)978-3-642-22910-7 
040 |d UtOrBLW 
049 |a WENN 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Okun, Oleg.  |0 no2008155594 
245 1 0 |a Ensembles in Machine Learning Applications  |h [electronic resource] /  |c edited by Oleg Okun, Giorgio Valentini, Matteo Re. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XX, 252 pages 78 illustrations, 28 illustrations in color :  |b digital. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 373 
505 0 |a From the content: Facial Action Unit Recognition Using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classifiers -- On the Design of Low Redundancy Error-Correcting Output Codes -- Minimally-Sized Balanced Decomposition Schemes for Multi-Class Classification -- Bias-Variance Analysis of ECOC and Bagging Using Neural Nets -- Fast-ensembles of Minimum Redundancy Feature Selection. 
520 |a This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms – advanced machine learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.   This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications. 
650 0 |a Engineering.  |0 sh 85043176  
650 0 |a Artificial intelligence.  |0 sh 85008180  
700 1 |a Valentini, Giorgio.  |0 no2008155599 
700 1 |a Re, Matteo.  |0 n 2011071903 
710 2 |a SpringerLink (Online service)  |0 no2005046756 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642229091 
830 0 |a Studies in computational intelligence ;  |v v. 373.  |0 no2005104439 
856 4 0 |t 0  |u https://ezproxywit.flo.org/login?qurl=https://dx.doi.org/10.1007/978-3-642-22910-7  |y Full text (Wentworth users only). 
999 1 0 |i 045ddeb9-0f6b-43b7-8e68-6e4ac32bd0b9  |l w1376510  |s US-MBWI  |m ensembles_in_machine_learning_applications____________________________elect2011_______sprina________________________________________okun__oleg_________________________e 
999 1 1 |l w1376510  |s ISIL:US-MBWI  |i Wentworth  |t BKS  |a Ebooks  |c Springer  |d Other scheme  |p UNLOANABLE