Stochastic Optimization Methods

Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and...

Full description

Saved in:
Bibliographic Details
Main Author: Marti, Kurt
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Subjects:
Online Access:Full text (Wentworth users only).

MARC

LEADER 00000cam a22000005i 4500
001 34cc6888-0ce1-40b4-8aa1-2403309a43df
005 20240722000000.0
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540268482  |9 978-3-540-26848-2 
024 7 |a 10.1007/b138181  |2 doi 
035 |a (DE-He213)978-3-540-26848-2 
040 |d UtOrBLW 
049 |a WENN 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
082 0 4 |a 658.40301  |2 23 
100 1 |a Marti, Kurt.  |0 n 50052453  
245 1 0 |a Stochastic Optimization Methods  |h [electronic resource] /  |c by Kurt Marti. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XIII, 314 pages 14 illustrations :  |b digital. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Basic Stochastic Optimization Methods: Decision/Control Under Stochastic Uncertainty -- Deterministic Substitute Problems in Optimal Decision Under Stochastic Uncertainty -- Differentiation Methods: Differentiation Methods for Probability and Risk Functions -- Deterministic Descent Directions: Deterministic Descent Directions and Efficient Points -- Semi-Stochastic Approximation Methods: RSM-Based Stochastic Gradient Procedures -- Stochastic Approximation Methods with Different Error Variances -- Technical Applications: Approximation of the Probability of Failure/Survival in Plastic Structural Analysis and Optimal Plastic Design. 
520 |a Optimization problems arising in practice involve random parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, deterministic substitute problems are needed. Based on the distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Deterministic and stochastic approximation methods and their analytical properties are provided: Taylor expansion, regression and response surface methods, probability inequalities, First Order Reliability Methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation methods, differentiation of probability and mean value functions. Convergence results of the resulting iterative solution procedures are given. 
650 0 |a Economics.  |0 sh 85040850  
650 0 |a Mathematical optimization.  |0 sh 85082127  
710 2 |a SpringerLink (Online service)  |0 no2005046756 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540222729 
856 4 0 |t 0  |u https://ezproxywit.flo.org/login?qurl=https://dx.doi.org/10.1007/b138181  |y Full text (Wentworth users only). 
999 1 0 |i 34cc6888-0ce1-40b4-8aa1-2403309a43df  |l w1365456  |s US-MBWI  |m stochastic_optimization_methods_______________________________________elect2005_______sprina________________________________________marti__kurt________________________e 
999 1 1 |l w1365456  |s ISIL:US-MBWI  |i Wentworth  |t BKS  |a Ebooks  |c Springer  |d Other scheme  |p UNLOANABLE