Evolutionary deep learning : genetic algorithms and neural networks /
Evolutionary Deep Learning is a guide to improving your deep learning models with AutoML enhancements based on the principles of biological evolution. This exciting new approach utilizes lesser-known AI approaches to boost performance without hours of data annotation or model hyperparameter tuning....
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Shelter Island, NY :
Manning Publications,
2023.
|
Subjects: | |
Online Access: | Full text (Wentworth users only) |
MARC
LEADER | 00000nam a22000007i 4500 | ||
---|---|---|---|
001 | 7ac2ed90-8c23-4fd7-846b-42e4b378aff8 | ||
005 | 20240722000000.0 | ||
008 | 230906s2023 nyua o 001 0 eng d | ||
020 | |a 1617299529 | ||
035 | |a (OCoLC)1396224086 | ||
035 | |a (OCoLC)on1396224086 | ||
037 | |a 9781617299520 |b O'Reilly Media | ||
040 | |a ORMDA |b eng |e rda |e pn |c ORMDA |d EBLCP | ||
049 | |a WENN | ||
049 | |a WENN | ||
050 | 4 | |a Q325.73 | |
082 | 0 | 4 | |a 006.3/1 |2 23/eng/20230906 |
100 | 1 | |a Lanham, Micheal, |e author. |1 https://isni.org/isni/0000000500215498 | |
245 | 1 | 0 | |a Evolutionary deep learning : |b genetic algorithms and neural networks / |c Micheal Lanham. |
264 | 1 | |a Shelter Island, NY : |b Manning Publications, |c 2023. | |
300 | |a 1 online resource (xxii, 336 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
500 | |a Includes index. | ||
505 | 0 | |a Part 1. Getting started. Introducing evolutionary deep learning -- Introducing evolutionary computation -- Introducing genetic algorithms with DEAP -- More evolutionary computation with DEAP -- Part 2. Optimizing deep learning. Automating hyperparameter optimization -- Neuroevolution optimization -- Evolutionary convolutional neural networks -- Part 3. Advanced applications. Evolving autoencoders -- Generative deep learning and evolution -- NEAT: neuroEvolution of augmenting topologies -- Evolutionary learning with NEAT -- Evolutionary machine learning and beyond. | |
520 | |a Evolutionary Deep Learning is a guide to improving your deep learning models with AutoML enhancements based on the principles of biological evolution. This exciting new approach utilizes lesser-known AI approaches to boost performance without hours of data annotation or model hyperparameter tuning. In this one-of-a-kind guide, you’ll discover tools for optimizing everything from data collection to your network architecture. | ||
588 | |a Description based on print version record. | ||
650 | 0 | |a Deep learning (Machine learning) | |
650 | 0 | |a Machine learning. | |
650 | 0 | |a Evolutionary computation. | |
655 | 0 | |a Electronic books. | |
776 | 0 | 8 | |i Print version: |a Lanham, Micheal. |t Evolutionary deep learning. |d Shelter Island, NY : Manning Publications, 2023 |z 9781617299520 |w (OCoLC)1390609254 |
856 | 4 | 0 | |t 0 |u https://go.oreilly.com/wentworth-institute-of-technology/library/view/-/9781617299520/?ar |y Full text (Wentworth users only) |
999 | 1 | 0 | |i 7ac2ed90-8c23-4fd7-846b-42e4b378aff8 |l w3018909 |s US-MBWI |m evolutionary_deep_learninggenetic_algorithms_and_neural_networks___________2023_______mannia________________________________________lanham__micheal____________________e |
999 | 1 | 1 | |l w3018909 |s ISIL:US-MBWI |i Wentworth |t BKS |a Ebooks |c Safari |d Other scheme |p UNLOANABLE |