Evolutionary deep learning : genetic algorithms and neural networks /

Evolutionary Deep Learning is a guide to improving your deep learning models with AutoML enhancements based on the principles of biological evolution. This exciting new approach utilizes lesser-known AI approaches to boost performance without hours of data annotation or model hyperparameter tuning....

Full description

Saved in:
Bibliographic Details
Main Author: Lanham, Micheal (Author)
Format: Electronic eBook
Language:English
Published: Shelter Island, NY : Manning Publications, 2023.
Subjects:
Online Access:Full text (Wentworth users only)

MARC

LEADER 00000nam a22000007i 4500
001 7ac2ed90-8c23-4fd7-846b-42e4b378aff8
005 20240722000000.0
008 230906s2023 nyua o 001 0 eng d
020 |a 1617299529 
035 |a (OCoLC)1396224086 
035 |a (OCoLC)on1396224086 
037 |a 9781617299520  |b O'Reilly Media 
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d EBLCP 
049 |a WENN 
049 |a WENN 
050 4 |a Q325.73 
082 0 4 |a 006.3/1  |2 23/eng/20230906 
100 1 |a Lanham, Micheal,  |e author.  |1 https://isni.org/isni/0000000500215498 
245 1 0 |a Evolutionary deep learning :  |b genetic algorithms and neural networks /  |c Micheal Lanham. 
264 1 |a Shelter Island, NY :  |b Manning Publications,  |c 2023. 
300 |a 1 online resource (xxii, 336 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
505 0 |a Part 1. Getting started. Introducing evolutionary deep learning -- Introducing evolutionary computation -- Introducing genetic algorithms with DEAP -- More evolutionary computation with DEAP -- Part 2. Optimizing deep learning. Automating hyperparameter optimization -- Neuroevolution optimization -- Evolutionary convolutional neural networks -- Part 3. Advanced applications. Evolving autoencoders -- Generative deep learning and evolution -- NEAT: neuroEvolution of augmenting topologies -- Evolutionary learning with NEAT -- Evolutionary machine learning and beyond. 
520 |a Evolutionary Deep Learning is a guide to improving your deep learning models with AutoML enhancements based on the principles of biological evolution. This exciting new approach utilizes lesser-known AI approaches to boost performance without hours of data annotation or model hyperparameter tuning. In this one-of-a-kind guide, you’ll discover tools for optimizing everything from data collection to your network architecture. 
588 |a Description based on print version record. 
650 0 |a Deep learning (Machine learning) 
650 0 |a Machine learning. 
650 0 |a Evolutionary computation. 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Lanham, Micheal.  |t Evolutionary deep learning.  |d Shelter Island, NY : Manning Publications, 2023  |z 9781617299520  |w (OCoLC)1390609254 
856 4 0 |t 0  |u https://go.oreilly.com/wentworth-institute-of-technology/library/view/-/9781617299520/?ar  |y Full text (Wentworth users only) 
999 1 0 |i 7ac2ed90-8c23-4fd7-846b-42e4b378aff8  |l w3018909  |s US-MBWI  |m evolutionary_deep_learninggenetic_algorithms_and_neural_networks___________2023_______mannia________________________________________lanham__micheal____________________e 
999 1 1 |l w3018909  |s ISIL:US-MBWI  |i Wentworth  |t BKS  |a Ebooks  |c Safari  |d Other scheme  |p UNLOANABLE