A Mathematical Tapestry : Demonstrating the Beautiful Unity of Mathematics.
Build paper polygons and discover how systematic paper folding reveals exciting patterns and relationships between seemingly unconnected branches of mathematics.
Saved in:
Main Author: | |
---|---|
Other Authors: | , |
Format: | Electronic eBook |
Language: | English |
Published: |
Leiden :
Cambridge University Press,
2010.
|
Subjects: | |
Online Access: | Full text (Emerson users only) Full text (Emmanuel users only) Full text (NECO users only) Full text (MCPHS users only) Full text (Wentworth users only) |
MARC
LEADER | 00000cam a2200000ui 4500 | ||
---|---|---|---|
001 | a6add0f4-757c-4189-8fbc-5dddcc01504d | ||
005 | 20240829000000.0 | ||
008 | 100802s2010 ne o 000 0 eng d | ||
019 | |a 776967643 | ||
020 | |a 9780511775031 | ||
020 | |a 0511775032 | ||
029 | 1 | |a DEBBG |b BV044144755 | |
029 | 1 | |a DEBSZ |b 379315491 | |
029 | 1 | |a DKDLA |b 820120-katalog:999926975105765 | |
035 | |a (OCoLC)651599417 |z (OCoLC)776967643 | ||
035 | |a (OCoLC)ocn651599417 | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d YDXCP |d OCLCQ |d MHW |d OCLCQ |d DEBSZ |d OCLCO |d OCLCQ |d AUD |d BDX |d CUY |d COO |d OCLCF |d OCLCQ |d ZCU |d MERUC |d U3W |d ICG |d INT |d OCLCQ |d DKC |d OCLCQ |d OL$ |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
050 | 4 | |a QA36.H53 2010 | |
082 | 0 | 4 | |a 516 |
100 | 1 | |a Hilton, Peter. | |
245 | 1 | 2 | |a A Mathematical Tapestry : |b Demonstrating the Beautiful Unity of Mathematics. |
260 | |a Leiden : |b Cambridge University Press, |c 2010. | ||
300 | |a 1 online resource (308 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; 1 Flexagons A beginning thread; 2 Another thread 1-period paper-folding; 3 More paper-folding threads 2-period paper-folding; 4 A number-theory thread Folding numbers, a number trick, and some tidbits; 5 The polyhedron thread Building some polyhedra and defining a regular polyhedron; 6 Constructing dipyramids and rotating rings from straight strips of triangles; 7 Continuing the paper-folding and number-theory threads; 8 A geometry and algebra thread Constructing, and using, Jennifer's puzzle. | |
505 | 8 | |a 9 A polyhedral geometry thread Constructing braided Platonic solids and other woven polyhedra10 Combinatorial and symmetry threads; 11 Some golden threads Constructing more dodecahedra; 12 More combinatorial threads Collapsoids; 13 Group theory The faces of the trihexaflexagon; 14 Combinatorial and group-theoretical threads Extended face planes of the Platonic solids; 15 A historical thread Involving the Euler characte. | |
520 | |a Build paper polygons and discover how systematic paper folding reveals exciting patterns and relationships between seemingly unconnected branches of mathematics. | ||
588 | 0 | |a Print version record. | |
590 | |a ProQuest Ebook Central |b Ebook Central College Complete | ||
650 | 0 | |a Mathematics. | |
650 | 7 | |a mathematics. |2 aat | |
650 | 7 | |a applied mathematics. |2 aat | |
700 | 1 | |a Pedersen, Jean. | |
700 | 1 | |a Donmoyer, Sylvie. | |
758 | |i has work: |a A mathematical tapestry (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG88XrtvbPrbXm8gjDKtGb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Hilton, Peter. |t A Mathematical Tapestry : Demonstrating the Beautiful Unity of Mathematics. |d Leiden : Cambridge University Press, ©2010 |z 9780521764100 |
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/emerson/detail.action?docID=542774 |z Full text (Emerson users only) |t 0 |
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/emmanuel/detail.action?docID=542774 |z Full text (Emmanuel users only) |t 0 |
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/neco/detail.action?docID=542774 |z Full text (NECO users only) |t 0 |
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/mcphs/detail.action?docID=542774 |z Full text (MCPHS users only) |t 0 |
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/wit/detail.action?docID=542774 |z Full text (Wentworth users only) |t 0 |
999 | 1 | 0 | |i a6add0f4-757c-4189-8fbc-5dddcc01504d |l in00000008457 |s US-MBE |m mathematical_tapestrydemonstrating_the_beautiful_unity_of_mathematics______2010_______cambra________________________________________hilton__peter______________________e |
999 | 1 | 0 | |i a6add0f4-757c-4189-8fbc-5dddcc01504d |l in00000245237 |s US-MBEMM |m mathematical_tapestrydemonstrating_the_beautiful_unity_of_mathematics______2010_______cambra________________________________________hilton__peter______________________e |
999 | 1 | 0 | |i a6add0f4-757c-4189-8fbc-5dddcc01504d |l in00000195991 |s US-MBNECO |m mathematical_tapestrydemonstrating_the_beautiful_unity_of_mathematics______2010_______cambra________________________________________hilton__peter______________________e |
999 | 1 | 0 | |i a6add0f4-757c-4189-8fbc-5dddcc01504d |l in00000178679 |s US-MBP |m mathematical_tapestrydemonstrating_the_beautiful_unity_of_mathematics______2010_______cambra________________________________________hilton__peter______________________e |
999 | 1 | 0 | |i a6add0f4-757c-4189-8fbc-5dddcc01504d |l in00000221573 |s US-MBWI |m mathematical_tapestrydemonstrating_the_beautiful_unity_of_mathematics______2010_______cambra________________________________________hilton__peter______________________e |
999 | 1 | 1 | |l in00000008457 |s ISIL:US-MBE |i Emerson |t BKS |a EBooks |c ProQuest |d Other scheme |x E-Resource |p UNLOANABLE |
999 | 1 | 1 | |l in00000245237 |s ISIL:US-MBEMM |i Emmanuel |t BKS |a Online |c ProQuest |d Other scheme |p UNLOANABLE |
999 | 1 | 1 | |l in00000195991 |s ISIL:US-MBNECO |i NECO |t BKS |a eBooks |c ProQuest |d Other scheme |p UNLOANABLE |
999 | 1 | 1 | |l in00000178679 |s ISIL:US-MBP |i MCPHS |t BKS |a E-Collections |c ProQuest |d Other scheme |p UNLOANABLE |
999 | 1 | 1 | |l in00000221573 |s ISIL:US-MBWI |i Wentworth |t BKS |a Ebooks |c ProQuest |d Other scheme |p UNLOANABLE |