Classical Fourier Analysis

The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readershi...

Full description

Saved in:
Bibliographic Details
Main Author: Grafakos, Loukas
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2014.
Edition:3rd ed. 2014.
Series:Graduate texts in mathematics ; 249.
Subjects:
Online Access:Full text (Wentworth users only)

MARC

LEADER 00000cam a22000005i 4500
001 aca68e3e-2e30-4e0a-a6be-cdcdb7413953
005 20240722000000.0
008 141117s2014 xxu| s |||| 0|eng d
020 |a 9781493911943  |9 978-1-4939-1194-3 
024 7 |a 10.1007/978-1-4939-1194-3  |2 doi 
035 |a (DE-He213)978-1-4939-1194-3 
040 |d UtOrBLW 
049 |a WENN 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.2433  |2 23 
100 1 |a Grafakos, Loukas.  |0 n 2003009320 
245 1 0 |a Classical Fourier Analysis  |h [electronic resource] /  |c by Loukas Grafakos. 
250 |a 3rd ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XVII, 638 pages 14 illustrations, 2 illustrations in color :  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 249 
505 0 |a Preface -- 1. Lp Spaces and Interpolation -- 2. Maximal Functions, Fourier Transform, and Distributions -- 3. Fourier Series -- 4. Topics on Fourier Series -- 5. Singular Integrals of Convolution Type -- 6. Littlewood–Paley Theory and Multipliers -- 7. Weighted Inequalities -- A. Gamma and Beta Functions -- B. Bessel Functions -- C. Rademacher Functions -- D. Spherical Coordinates -- E. Some Trigonometric Identities and Inequalities -- F. Summation by Parts -- G. Basic Functional Analysis -- H. The Minimax Lemma -- I. Taylor's and Mean Value Theorem in Several Variables -- J. The Whitney Decomposition of Open Sets in Rn -- Glossary -- References -- Index. 
520 |a The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition. Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and improved references. Reviews from the Second Edition: “The books cover a large amount of mathematics. They are certainly a valuable and useful addition to the existing literature and can serve as textbooks or as reference books. Students will especially appreciate the extensive collection of exercises.” —Andreas Seager, Mathematical Reviews “This book is very interesting and useful. It is not only a good textbook, but also an indispensable and valuable reference for researchers who are working on analysis and partial differential equations. The readers will certainly benefit a lot from the detailed proofs and the numerous exercises.” —Yang Dachun, zbMATH 
650 0 |a Mathematics.  |0 sh 85082139  
650 0 |a Harmonic analysis.  |0 sh 85058939  
650 0 |a Fourier analysis.  |0 sh 85051088  
650 0 |a Functional analysis.  |0 sh 85052312  
710 2 |a SpringerLink (Online service)  |0 no2005046756 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493911936 
830 0 |a Graduate texts in mathematics ;  |v 249.  |0 n 83723435  
856 4 0 |t 0  |u https://ezproxywit.flo.org/login?qurl=https://dx.doi.org/10.1007/978-1-4939-1194-3  |y Full text (Wentworth users only) 
999 1 0 |i aca68e3e-2e30-4e0a-a6be-cdcdb7413953  |l w1708826  |s US-MBWI  |m classical_fourier_analysis____________________________________________elect2014____201sprina________________________________________grafakos__loukas___________________e 
999 1 1 |l w1708826  |s ISIL:US-MBWI  |i Wentworth  |t BKS  |a Ebooks  |c Springer  |d Other scheme  |p UNLOANABLE