How We Understand Mathematics Conceptual Integration in the Language of Mathematical Description /

This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, a...

Full description

Saved in:
Bibliographic Details
Main Author: Woźny, Jacek (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2018.
Series:Mathematics in Mind.
Subjects:
Online Access:Full text (Wentworth users only)

MARC

LEADER 00000cam a22000005i 4500
001 ba83b914-0fa7-4d3f-9877-c2faad2ab850
005 20240722000000.0
008 180425s2018 gw | s |||| 0|eng d
020 |a 9783319776880  |9 978-3-319-77688-0 
024 7 |a 10.1007/978-3-319-77688-0  |2 doi 
035 |a (DE-He213)978-3-319-77688-0 
040 |d UtOrBLW 
049 |a WENN 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Woźny, Jacek,  |e author.  |0 n 97071104  
245 1 0 |a How We Understand Mathematics  |h [electronic resource] :  |b Conceptual Integration in the Language of Mathematical Description /  |c by Jacek Woźny. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2018. 
300 |a X, 118 pages 16 illustrations, 10 illustrations in color :  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematics in Mind,  |x 2522-5405 
505 0 |a 1. Introduction -- 2. The Theoretical Framework and the Subject of Study -- 3. Sets -- 4. Mappings -- 5. Groups -- 6. Rings, Fields, and Vector Spaces -- 7. Summary and Conclusion -- Sources. . 
520 |a This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending. This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested in the engaging question of how mathematics works and why it works so well. . 
650 0 |a Mathematics.  |0 sh 85082139  
650 0 |a Group theory.  |0 sh 85057512  
650 0 |a Combinatorial analysis.  |0 sh 85028802  
650 0 |a Cognitive grammar.  |0 sh 86004349  
710 2 |a SpringerLink (Online service)  |0 no2005046756 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319776873 
830 0 |a Mathematics in Mind. 
856 4 0 |t 0  |u https://ezproxywit.flo.org/login?qurl=https://dx.doi.org/10.1007/978-3-319-77688-0  |y Full text (Wentworth users only) 
999 1 0 |i ba83b914-0fa7-4d3f-9877-c2faad2ab850  |l w2292177  |s US-MBWI  |m how_we_understand_mathematicsconceptual_integration_in_the_language_ofelect2018_______sprina________________________________________wozny__jacek_______________________e 
999 1 1 |l w2292177  |s ISIL:US-MBWI  |i Wentworth  |t BKS  |a Ebooks  |c Springer  |d Other scheme  |p UNLOANABLE