Search alternatives:
"slight" » "sight" (Expand Search)
"slightly" » "sightly" (Expand Search)
"flight" » "fight" (Expand Search)
"flightly" » "fightly" (Expand Search)
"fights" » "fight" (Expand Search), "lights" (Expand Search)
"nights" » "lights" (Expand Search), "insights" (Expand Search), "eights" (Expand Search)
"night" » "eight" (Expand Search)
"eights" » "heights" (Expand Search), "weights" (Expand Search), "eight" (Expand Search)
"wheights" » "whheights" (Expand Search), "whweights" (Expand Search), "wheight" (Expand Search), "heights" (Expand Search), "weights" (Expand Search)
"whweights" » "whwheights" (Expand Search), "whwweights" (Expand Search), "whweight" (Expand Search), "wheights" (Expand Search), "heights" (Expand Search), "weights" (Expand Search)
"weight" » "eight" (Expand Search)
"might" » "eight" (Expand Search)
"slight" » "sight" (Expand Search)
"slightly" » "sightly" (Expand Search)
"flight" » "fight" (Expand Search)
"flightly" » "fightly" (Expand Search)
"fights" » "fight" (Expand Search), "lights" (Expand Search)
"nights" » "lights" (Expand Search), "insights" (Expand Search), "eights" (Expand Search)
"night" » "eight" (Expand Search)
"eights" » "heights" (Expand Search), "weights" (Expand Search), "eight" (Expand Search)
"wheights" » "whheights" (Expand Search), "whweights" (Expand Search), "wheight" (Expand Search), "heights" (Expand Search), "weights" (Expand Search)
"whweights" » "whwheights" (Expand Search), "whwweights" (Expand Search), "whweight" (Expand Search), "wheights" (Expand Search), "heights" (Expand Search), "weights" (Expand Search)
"weight" » "eight" (Expand Search)
"might" » "eight" (Expand Search)
-
158041
Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries
Cham : Springer International Publishing : Imprint: Springer, 2022Table of Contents: “…Extreme Development of Dragon Fruit Agriculture with Nighttime Lighting in Southern Vietnam (Shenyue Jia, Son V. Nghiem, Seung-Hee Kim, Laura Krauser, Andrea E. …”
1st ed. 2022.
Format: Electronic eBookFull text (Wentworth users only)
-
158042
Corrosion Science
Singapore : Bentham Science Publishers, 2021Table of Contents: “…Urethane Type -- 6.4. Ultraviolet Light Curable Coatings -- 6.5. Silicone Type Coatings -- 7. …”
Format: Electronic eBookFull text (Emmanuel users only)
Full text (NECO users only)
Full text (MCPHS users only)
Full text (Wentworth users only)
-
158043
Distributed fiber sensing and dynamic ratings of power cable
[Piscataway, NJ] : Hoboken, New Jersey : IEEE Press ; John Wiley & Sons, Inc., 2020Table of Contents: “…Preface xiii -- Acknowledgments xvi -- 1 Application of Fiber Optic Sensing 1 -- 1.1 Types of Available FO Sensors 2 -- 1.2 Fiber Optic Applications for Monitoring of Concrete Structures 4 -- 1.3 Application of FO Sensing Systems in Mines 7 -- 1.4 Composite Aircraft Wing Monitoring 8 -- 1.5 Application in the Field of Medicine 9 -- 1.6 Application in the Power Industry 9 -- 1.6.1 Brief Literature Review 10 -- 1.6.2 Monitoring of Strain in the Overhead Conductor of Transmission Lines 15 -- 1.6.3 Temperature Monitoring of Transformers 16 -- 1.6.4 Optical Current Measurements 17 -- 1.7 Application for Oil, Gas, and Transportation Sectors 17 -- 2 Distributed Fiber Optic Sensing 20 -- 2.1 Introduction 20 -- 2.2 Advantages of the Fiber Optic Technology 20 -- 2.3 Disadvantages of the Distributed Sensing Technology 22 -- 2.4 Power Cable Applications 23 -- 3 Distributed Fiber Optic Temperature Sensing 26 -- 3.1 Fundamental Physics of DTS Measurements 26 -- 3.1.1 Rayleigh Scattering 26 -- 3.1.2 Raman Spectroscopy 27 -- 3.1.3 Brillouin Scattering 27 -- 3.1.4 Time and Frequency Domain Reflectometry 30 -- 4 Optical Fibers, Connectors, and Cables 32 -- 4.1 Optical Fibers 32 -- 4.1.1 Construction of the Fiber Optic Cable and Light Propagation Principles 33 -- 4.1.2 Protection and Placement of Optical Fibers in Power Cable Installations 38 -- 4.1.3 Comparison of Multiple and Single-Mode Fibers 44 -- 4.2 Optical Splicing 45 -- 4.3 Fiber Characterization 47 -- 4.4 Standards for Fiber Testing 55 -- 4.4.1 Fiber Optic Testing 56 -- 4.4.2 Fiber Optic Systems and Subsystems 56 -- 4.5 Optical Connectors 68 -- 4.6 Utility Practice for Testing of Optical Fibers 74 -- 4.7 Aging and Maintenance 75 -- 5 Types of Power Cables and Cable with Integrated Fibers 77 -- 5.1 Methods of Incorporating DTS Sensing Optical Fibers (Cables) into Power Transmission Cable Corridors 77 -- 5.1.1 Integration of Optical Cable into Land Power Cables 77 -- 5.1.2 Integration of Optical Cable into Submarine Power Cables 78.…”
Format: Electronic eBookFull text (Wentworth users only)
-
158044
Rethinking justice : restoring our humanity
Lanham : Lexington Books, 2007Format: Book
//IF NOT LOGGED IN - FORCE LOGIN ?>
//ELSE THEY ARE LOGGED IN PROCEED WITH THE OPEN URL CODE:?> -
158045
Thirty years of the HIV/AIDS epidemic in Argentina : an assessment of the national health response
Washington, DC : World Bank, 2015Format: Electronic eBookFull text (Emerson users only)
Full text (Emmanuel users only)
Full text (NECO users only)
Full text (MCPHS users only)
Full text (Wentworth users only)
-
158046
George Romney.
[San Francisco, California, USA] : Kanopy Streaming, 2014Format: Electronic VideoStreaming video (Wentworth users only)
-
158047
Caste at birth
New York, NY : Filmakers Library, 1991Format: Electronic VideoStreaming video (Emerson users only)
Full text (Emmanuel users only)
Full text (MCPHS users only)
Full text (Wentworth users only)
-
158048
Agro-product processing technology : principles and practice
[Boca Raton] : CRC Press, 2020Table of Contents: “…ContentsForeword--Preface--Author--Chapter 1 Introduction--1.1 Introduction--1.2 Impotence of Postharvest Technology--1.3 Importance of Postharvest Losses--1.4 Postharvest Technology--References--Chapter 2 Physical, Thermal, and Chemical Properties of Food and Biological Materials--2.1 Introduction--2.2 Physical Properties--2.2.1 Physical Dimensions--2.2.2 1000-Grain Weight--2.2.3 Bulk Density--2.2.4 Shrinkage--2.2.5 Friction--2.2.5.1 Angle of Internal Friction and Angle of Repose--2.2.5.2 Coefficient of Friction--2.3 Thermal Properties--2.3.1 Specific Heat--2.3.2 Thermal Conductivity--2.3.2.1 Theory--2.3.2.2 Apparatus and Measurement--2.3.3 Latent Heat of Vaporization--2.3.3.1 Determination of Latent Heat of Vaporization--2.3.4 Heat Transfer Coefficient of Product Bed--2.3.4.1 Dimensional Analysis--2.3.4.2 Comparison of Theory and Experiment--2.3.4.3 Theory--2.3.4.4 Determination of Volumetric Heat Transfer Coefficient--2.4 Chemical Properties--2.4.1 Starch--2.4.2 Protein--2.4.3 Fat--2.4.4 Vitamin--Key to Symbols--Exercises--References--Chapter 3 Cleaning, Grading, and Sorting--3.1 Grade Factor--3.2 Washing--3.3 Sorting Fruits and Vegetables--3.4 Sorting Grain--3.5 Spiral Separator--3.6 Indent Cylinder Separator--3.7 Color Separator--3.8 Centrifugal Separation--3.8.1 Stokes' Equation--3.9 The Centrifuge--3.10 The Cream Separator--3.11 Cyclone Separator--3.12 Machine Vision--3.12.1 Image Acquisition--3.12.1.1 Computer Vision System--3.12.1.2 Ultrasound and Infrared--3.12.1.3 Tomographic Imaging--3.12.2 Preprocessing--3.12.3 Segmentation--3.12.4 Feature Extraction--3.12.4.1 Color Features--3.12.4.2 Morphological Features--3.12.4.3 Texture Features--3.12.5 Classification--Bibliography--Chapter 4 Psychrometry--4.1 Introduction--4.2 Psychrometric Terms--4.2.1 Humidity Ratio--4.2.2 Relative Humidity--4.2.3 Specific Volume--4.2.4 Vapor Pressure--4.2.5 Dry-Bulb Temperature--4.2.6 Dew Point Temperature--4.2.7 Wet-Bulb Temperature--4.2.8 Enthalpy--4.2.9 Adiabatic Wet-Bulb Temperature--4.2.10 Psychrometric Wet-Bulb Temperature--4.3 Construction of Psychrometric Chart--4.4 Use of Psychrometric Chart--4.4.1 Sensible Heating and Cooling--4.4.2 Heating with Humidification--4.4.3 Cooling with Humidification--4.4.4 Cooling with Dehumidification--4.4.5 Drying--4.4.6 Mixing of Airstreams--4.4.7 Heat Addition with Air Mixing--4.4.8 Drying with Recirculation--Key to Symbols--Exercises--Bibliography--Chapter 5 Drying of Agro Products--5.1 Principles of Drying--5.2 Importance of Drying--5.3 Moisture Content--5.3.1 Moisture Content Representation--5.3.2 Determination of Moisture Content--5.3.2.1 Direct Methods--5.3.2.2 Indirect Methods--5.4 Equilibrium Moisture Content--5.4.1 Determination of Static Equilibrium Moisture Content--5.4.2 Static Equilibrium Moisture Content Models--5.5 Mechanism of Drying--5.6 Thin-Layer Drying--5.6.1 Thin-Layer Drying Equations--5.6.1.1 Empirical Drying Equations--5.6.1.2 Theoretical Drying Equations--5.6.1.3 Semi-Theoretical Drying Equations--5.6.2 Drying Rate--5.6.3 Drying Parameters--5.6.4 Drying Rate Constant and Diffusion Coefficient--5.6.4.1 Drying Rate Constant--5.6.5 Half Response Time--5.7 Deep-Bed Drying--5.7.1 Logarithmic Model--5.7.2 Partial Differential Equation Model--5.7.2.1 Method of Solution--5.7.2.2 Comparisons of Simulated and Observed Results--5.8 Fluidized Bed Drying Model--5.8.1 Heat Balance Equation--5.8.2 Drying Rate Equation--5.8.3 Mass Balance Equation--5.9 Agro-Product Drying Systems--5.9.1 Solar Drying Systems--5.9.1.1 Solar Dryers--5.9.2 Batch Drying Systems--5.9.2.1 Flatbed Dryer--5.9.3 Continuous Flow Drying Systems--5.9.3.1 Cross-Flow Dryer--5.9.3.2 Cross-Flow Batch Dryer--5.9.3.3 Concurrent Flow Dryer--5.9.3.4 Counterflow Dryer--5.9.3.5 Mixed-Flow Dryer--5.10 Safe Temperature for Drying Grain--5.11 Selection of Dryers--Key to Symbols--Exercises--Bibliography--Chapter 6 Parboiling of Rice--6.1 Introduction--6.2 Principles of Parboiling--6.3 Soaking--6.3.1 Kinetics of Soaking--6.3.2 Finite Element Modeling of Soaking of Water by Paddy--6.3.3 Half Response Time--6.3.4 Kinetics of Water Diffusion and Starch Gelatinization--6.4 Steaming--6.5 Drying--6.6 Effect of Parboiling on Milling, Nutritional, and Cooking Qualitiesof Rice--6.7 Parboiling Methods--6.7.1 Traditional Methods--6.7.1.1 Single Stage Parboiling--6.7.1.2 Double Stage Parboiling--6.7.2 Modern Methods--6.7.2.1 CFTRI (Central Food Technological ResearchIndustries) Method--6.7.2.2 Jadavpur University Method--6.7.2.3 Malek Process--6.7.2.4 Schule Process--6.7.2.5 Crystal Rice Process--6.7.2.6 Rice Conversion Process--6.7.2.7 Avorio Process--6.7.3 Estimation of Heat Required for Parboiling--6.7.3.1 Soaking Operation--6.7.3.2 Steaming Operation--6.7.3.3 Drying Operation--Exercises--Bibliography--Chapter 7 Milling of Rice and Wheat--7.1 Introduction--7.2 Rice Milling--7.3 Traditional Methods--7.3.1 Home Pounding--7.3.2 Huller Mills--7.3.3 Sheller Mills--7.3.4 Rubber Roll Sheller Mills--7.4 The Modern Rice Milling Process--7.5 Modern Rice Milling Machinery--7.5.1 Paddy Cleaner--7.5.2 Stoner--7.5.3 Rubber Roll Sheller--7.5.4 Paddy Separator--7.5.5 Whitening or Polishing--7.5.5.1 Cone-Type Polisher--7.5.5.2 Horizontal Abrasive-Type Polisher--7.5.5.3 Friction-Type Polisher--7.5.6 Bran and Polished Rice Separator--7.5.7 Rice Grader--7.5.8 Rice Mixing--7.6 Wheat Milling--7.6.1 Conditioning/Hydrothermal Treatment--7.6.2 Milling--7.6.3 Storage of Finished Products--7.7 Size Characteristics--7.7.1 Sieve--7.7.2 Fineness Modulus--7.7.3 Energy Requirements--Bibliography--Chapter 8 By-Product Utilization--8.1 Introduction--8.2 Fuels and Combustion--8.2.1 Furnaces--8.3 Pyrolysis and Gasification--8.3.1 Pyrolysis (Destructive Distillation) and Gasification--8.3.2 Types of Gasifiers--8.3.2.1 Countercurrent Moving Bed Gasifiers--8.3.2.2 Concurrent Moving Bed Gasifiers--8.3.2.3 Crosscurrent Moving Bed Gasifiers--8.3.2.4 Fluidized Bed Gasifiers--8.3.3 Gasification Process--8.3.3.1 Oxidation--8.3.3.2 Reduction--8.3.3.3 Drying--8.3.4 Gasifier Units--8.4 Liquefaction--8.5 Hydrolysis Followed by Fermentation--8.6 Biochar Production and Utilization--8.6.1 Biochar Carbonizer--8.6.2 Types of Carbonizers--8.6.2.1 Application--8.7 Rice Husk Pelletizing and Briquetting--8.7.1 Need for Briquetting--8.7.2 Principle and Technology--8.7.3 Types of Briquetting Machines--8.7.3.1 High- and Medium-Pressure Compaction--8.7.3.2 Screw Press--8.7.3.3 Piston Press--8.7.3.4 Low-Pressure Compaction--8.7.3.5 Hand-Molded Briquettes--8.7.4 Applications--8.7.5 Limitations--8.7.6 Future Prospective--8.8 Biogas Digesters--8.8.1 Anaerobic Digestion Process--8.8.2 Indian-Type Biogas Digester--8.8.3 The Chinese Biogas Digester--8.8.4 Digester Sizing--8.9 Composting--8.9.1 Process of Composting--8.9.2 Mixing of Materials in the Compost--8.9.3 Starting a Composter--8.9.4 Operating a Compost--8.9.5 Simple Thermophile Composting Procedure--8.9.6 Types of Composters--8.10 Utilization of Rice Bran - Stabilizer Design and Oil Extraction--8.11 Bran - Stabilizer Design--8.12 Oil Extraction--8.12.1 Batch Extraction Method--Bibliography--Chapter 9 Storage of Agro Products--9.1 Principles of Storage--9.2 Interactions of Physical, Chemical, and Biological Variables in theDeterioration of Stored Grains--9.3 Computer Simulation Modeling for Stored Grain Pest Management--9.4 Grain Storage Systems--9.4.1 Traditional Storage Systems--9.4.2 Modern Storage Systems--9.4.2.1 Bagged Storage System--9.4.2.2 Silo Storage System--9.4.2.3 Airtight Grain Storage--9.4.2.4 Aerated Storage System--9.4.2.5 Low-Temperature Storage System (Grain Chillingby Refrigeration)--9.4.2.6 Controlled Atmosphere Storage Systems--9.4.2.7 Damp Grain Storage System with Chemicals--9.5 Design of Grain Storages--9.5.1 Structural Requirements--9.5.2 Janssen's Equation--9.5.3 Rankine's Equation--9.5.4 Airy's Equation--9.5.5 Construction Materials--Key to Symbols--Exercises--Bibliography--Chapter 10 Heating and Cooling of Agro Products--10.1 Introduction--10.2 Heat Conduction--10.2.1 The Differential Equation of Heat Conduction in Cartesianand Cylindrical Coordinate Systems--10.2.1.1 The Differential Equation ofHeat Conduction in Cartesian Coordinate System--10.2.1.2 The Differential Equation ofHeat Conduction in Cylindrical Coordinate System--10.2.2 The Composite Wall--10.2.3 Cylinder and Sphere--10.3 Convection--10.3.1 Forced Convection--10.3.2 Natural or Free Convection--10.3.3 Heat Exchangers--10.4 Radiation--10.4.1 Radiation Intensity and Shape Factor--10.4.2 Radiation Exchange between Black Surfaces--10.4.3 Heat Exchange by Radiation between Gray Surfaces--10.5 Cooling--10.5.1 Cooling Rate--10.6 Freezing--10.6.1 Freezing Point Depression--10.7 Heating--10.7.1 Boiling-Point Elevation--Key to Symbols--Exercises--Bibliography--Chapter 11 Refrigeration and Cold Storage--11.1 Introduction--11.2 Vapor Compression Refrigeration Cycle--11.3 Pressure-Enthalpy (p-h) Chart--11.3.1 Unit of Refrigeration--11.4 Refrigerants--11.4.1 Desirable Characteristics of Refrigerants--11.5 Construction of Psychrometric Chart--11.6 Moisture Control and Storage of Vegetables Crops--11.6.1 Potatoes--11.6.1.1 Adequate Volume--11.6.1.2 Adequate Strength--11.6.1.3 Storage Environment--11.6.1.4 Suberization Period--11.6.1.5 Short-Term Storage--11.6.1.6 Long-Term Storage--11.7 Cooling Requirement--Exercises--Bibliography--Chapter 12 Separation--12.1 Introduction--12.2 Contact Equilibrium Process--12.2.1 Absorption--12.2.2 Extraction--12.2.2.1 Rate of Extraction--12.2.2.2 Leaching--12.2.3 Distillation--12.2.3.1 Vapor-Liquid Equilibrium--…”
First edition.
Format: Electronic eBookFull text (WIT users only)
-
158049
Characterization of Minerals, Metals, and Materials 2020
Cham : Springer, 2020Table of Contents: “…Colorado -- Characterization of a Brazilian Kaolin and Its Sorption Abilityto Mineral Oils / Gilmar Pinheiro, Thamires Carvalho, Bianca Michel, Jessica Arjona, Margarita Bobadilha, Maria Silva-Valenzuela, Tatiana Costaand Francisco Valenzuela-Diaz -- Fabrication of Ultra-High Molecular Weight Polyethylene Membrane and Evaluation of Physical Characteristics for Wastewater Treatment / Shan Shan Xie, Zhang Fu Yuan and Yuan Tao Shi.…”
Format: Electronic Conference Proceeding eBookFull text (Wentworth users only)
-
158050
Parametric time-frequency domain spatial audio
Hoboken, NJ, USA : John Wiley & Sons, Inc., 2018Table of Contents: “…8.1 Introduction 201 -- 8.2 Notation and Signal Model 202 -- 8.3 Overview of the Method 203 -- 8.4 Loudspeaker-Based Spatial Sound Reproduction 204 -- 8.4.1 Estimation of the Target Covariance Matrix Cy 204 -- 8.4.2 Estimation of the Synthesis Beamforming Signals Ws 206 -- 8.4.4 Processing the Synthesis Signals (Wsx) to Obtain the Target Covariance Matrix Cy 206 -- Spatial Energy Distribution 207 -- 8.4.5 Listening Tests 208 -- 8.5 Binaural-Based Spatial Sound Reproduction 209 -- 8.5.1 Estimation of the Analysis and Synthesis Beamforming Weight Matrices 210 -- 8.5.2 Diffuse-Field Equalization of HRTFs 210 -- 8.5.3 Adaptive Mixing and Decorrelation 211 -- 8.5.4 Subjective Evaluation 211 -- 8.6 Conclusions 212 -- References 212 -- 9 Source Separation and Reconstruction of Spatial Audio Using Spectrogram Factorization 215 /Joonas Nikunen and Tuomas Virtanen -- 9.1 Introduction 215 -- 9.2 Spectrogram Factorization 217 -- 9.2.1 Mixtures of Sounds 217 -- 9.2.2 Magnitude Spectrogram Models 218 -- 9.2.3 Complex-Valued Spectrogram Models 221 -- 9.2.4 Source Separation by Time Frequency Filtering 225 -- 9.3 Array Signal Processing and Spectrogram Factorization 226 -- 9.3.1 Spaced Microphone Arrays 226 -- 9.3.2 Model for Spatial Covariance Based on Direction of Arrival 227 -- 9.3.3 Complex-Valued NMF with the Spatial Covariance Model 229 -- 9.4 Applications of Spectrogram Factorization in Spatial Audio 231 -- 9.4.1 Parameterization of Surround Sound: Upmixing by Time Frequency Filtering 231 -- 9.4.2 Source Separation Using a Compact Microphone Array 233 -- 9.4.3 Reconstruction of Binaural Sound Through Source Separation 238 -- 9.5 Discussion 243 -- 9.6 Matlab Example 243 -- References 247 -- Part III Signal-Dependent Spatial Filtering 251 -- 10 Time Frequency Domain Spatial Audio Enhancement 253 /Symeon Delikaris-Manias and Pasi Pertila -- 10.1 Introduction 253 -- 10.2 Signal-Independent Enhancement 254 -- 10.3 Signal-Dependent Enhancement 255 -- 10.3.1 Adaptive Beamformers 255.…”
First edition.
Format: Electronic eBookFull text (Wentworth users only)
-
158051
Case Studies in Bayesian Statistical Modelling and Analysis.
Wiley 2012Format: Electronic eBookFull text (Emerson users only)
Full text (Emmanuel users only)
Full text (NECO users only)
Full text (MCPHS users only)
Full text (Wentworth users only)
Full text (Wentworth users only)
Full text (Wentworth users only)
-
158052
STATISTICAL INFERENCE VIA DATA SCIENCE a moderndive into R and the Tidyverse.
[Place of publication not identified] : CRC PRESS, 2019Format: Electronic eBookFull text (WIT users only)
-
158053
Mussorgsky-Pictures at an Exhibition
[San Francisco, California, USA] : Kanopy Streaming, 2015Format: Electronic VideoStreaming video (Wentworth users only)
-
158054
The hollow years : France in the 1930s
New York : Norton, 1994Format: Book
//IF NOT LOGGED IN - FORCE LOGIN ?>
//ELSE THEY ARE LOGGED IN PROCEED WITH THE OPEN URL CODE:?> -
158055
Haunting of the Queen Mary
[United States] : VVS FILMS, 2023Format: Electronic VideoStreaming video (Wentworth users only)
-
158056
The Dive
[United States] : VVS FILMS, 2023Format: Electronic VideoStreaming video (Wentworth users only)
-
158057
Gorilla society : conflict, compromise, and cooperation between the sexes
Chicago : University of Chicago Press, 2007Table of Contents: “…Predation and association -- Conclusion -- A robust model, and therefore the right answer? -- Added variations -- Are female strategies irrelevant to males? …”
Format: Electronic eBookFull text (Emerson users only)
Full text (Emmanuel users only)
Full text (NECO users only)
Full text (MCPHS users only)
Full text (Wentworth users only)
-
158058
Learning Linux Binary Analysis.
Birmingham : Packt Publishing, Limited 2016Format: Electronic eBookFull text (Emerson users only)
Full text (Emmanuel users only)
Full text (MCPHS users only)
Full text (Wentworth users only)
Full text (Wentworth users only)
-
158059
Scikit-learn Cookbook - Second Edition.
Birmingham : Packt Publishing, 2017
2nd ed.Format: Electronic eBookFull text (Emerson users only)
Full text (Emmanuel users only)
Full text (NECO users only)
Full text (MCPHS users only)
Full text (Wentworth users only)
Full text (Wentworth users only)
-
158060
Signal Processing and Machine Learning with Applications
Cham : Springer International Publishing : Imprint: Springer, 2022Table of Contents: “…Part I Realms of Signal Processing -- 1 Digital Signal Representation -- 1.1 Introduction -- 1.2 Numbers -- 1.2.1 Numbers and Numerals -- 1.2.2 Types of Numbers -- 1.2.3 Positional Number Systems -- 1.3 Sampling and Reconstruction of Signals -- 1.3.1 Scalar Quantization -- 1.3.2 Quantization Noise -- 1.3.3 Signal-To-Noise Ratio -- 1.3.4 Transmission Rate -- 1.3.5 Nonuniform Quantizer -- 1.3.6 Companding -- 1.4 Data Representations -- 1.4.1 Fixed-Point Number Representations -- 1.4.2 Sign-Magnitude Format -- 1.4.3 One’s-Complement Format -- 1.4.4 Two’s-Complement Format -- 1.5 Fix-Point DSP’s -- 1.6 Fixed-Point Representations Based on Radix-Point -- 1.7 Dynamic Range -- 1.8 Precision -- 1.9 Background Information -- 1.10 Exercises -- 2 Signal Processing Background -- 2.1 Basic Concepts -- 2.2 Signals and Information -- 2.3 Signal Processing -- ix -- x Contents -- 2.4 Discrete Signal Representations -- 2.5 Delta and Impulse Function -- 2.6 Parseval’s Theorem -- 2.7 Gibbs Phenomenon -- 2.8 Wold Decomposition -- 2.9 State Space Signal Processing -- 2.10 Common Measurements -- 2.10.1 Convolution -- 2.10.2 Correlation -- 2.10.3 Auto Covariance -- 2.10.4 Coherence -- 2.10.5 Power Spectral Density (PSD) -- 2.10.6 Estimation and Detection -- 2.10.7 Central Limit Theorem -- 2.10.8 Signal Information Processing Types -- 2.10.9 Machine Learning -- 2.10.10Exercises -- 3 Fundamentals of Signal Transformations -- 3.1 Transformation Methods -- 3.1.1 Laplace Transform -- 3.1.2 Z-Transform -- 3.1.3 Fourier Series -- 3.1.4 Fourier Transform -- 3.1.5 Discrete Fourier Transform and Fast Fourier Transform -- 3.1.6 Zero Padding -- 3.1.7 Overlap-Add and Overlap-Save Convolution -- Algorithms -- 3.1.8 Short Time Fourier Transform (STFT) -- 3.1.9 Wavelet Transform -- 3.1.10 Windowing Signal and the DCT Transforms -- 3.2 Analysis and Comparison of Transformations -- 3.3 Background Information -- 3.4 Exercises -- 3.5 References -- 4 Digital Filters -- 4.1 Introduction -- 4.1.1 FIR and IIR Filters -- 4.1.2 Bilinear Transform -- 4.2 Windowing for Filtering -- 4.3 Allpass Filters -- 4.4 Lattice Filters -- 4.5 All-Zero Lattice Filter -- 4.6 Lattice Ladder Filters -- Contents xi -- 4.7 Comb Filter -- 4.8 Notch Filter -- 4.9 Background Information -- 4.10 Exercises -- 5 Estimation and Detection -- 5.1 Introduction -- 5.2 Hypothesis Testing -- 5.2.1 Bayesian Hypothesis Testing -- 5.2.2 MAP Hypothesis Testing -- 5.3 Maximum Likelihood (ML) Hypothesis Testing -- 5.4 Standard Analysis Techniques -- 5.4.1 Best Linear Unbiased Estimator (BLUE) -- 5.4.2 Maximum Likelihood Estimator (MLE) -- 5.4.3 Least Squares Estimator (LSE) -- 5.4.4 Linear Minimum Mean Square Error Estimator -- (LMMSE) -- 5.5 Exercises -- 6 Adaptive Signal Processing -- 6.1 Introduction -- 6.2 Parametric Signal Modeling -- 6.2.1 Parametric Estimation -- 6.3 Wiener Filtering -- 6.4 Kalman Filter -- 6.4.1 Smoothing -- 6.5 Particle Filter -- 6.6 Fundamentals of Monte Carl -- 6.6.1 Importance Sampling (IS) -- 6.7 Non-Parametric Signal Modeling -- 6.8 Non-Parametric Estimation -- 6.8.1 Correlogram -- 6.8.2 Periodogram -- 6.9 Filter Bank Method -- 6.10 Quadrature Mirror Filter Bank (QMF) -- 6.11 Background Information -- 6.12 Exercises -- 7 Spectral Analysis -- 7.1 Introduction -- 7.2 Adaptive Spectral Analysis -- 7.3 Multivariate Signal Processing -- 7.3.1 Sub-band Coding and Subspace Analysis -- 7.4 Wavelet Analysis -- 7.5 Adaptive Beam Forming -- xii Contents -- 7.6 Independent Component Analysis (ICA) -- 7.7 Principal Component Analysis (PCA) -- 7.8 Best Basis Algorithms -- 7.9 Background Information -- 7.10 Exercises -- Part II Machine Learning and Recognition -- 8 General Learning -- 8.1 Introduction to Learning -- 8.2 The Learning Phases -- 8.2.1 Search and Utility -- 8.3 Search -- 8.3.1 General Search Model -- 8.3.2 Preference relations -- 8.3.3 Different learning methods -- 8.3.4 Similarities -- 8.3.5 Learning to Recognize -- 8.3.6 Learning again -- 8.4 Background Information -- 8.5 Exercises -- 9 Signal Processes, Learning, and Recognition -- 9.1 Learning -- 9.2 Bayesian Formalism -- 9.2.1 Dynamic Bayesian Theory -- 9.2.2 Recognition and Search -- 9.2.3 Influences -- 9.3 Subjectivity -- 9.4 Background Information -- 9.5 Exercises -- 10 Stochastic Processes -- 10.1 Preliminaries on Probabilities -- 10.2 Basic Concepts of Stochastic Processes -- 10.2.1 Markov Processes -- 10.2.2 Hidden Stochastic Models (HSM) -- 10.2.3 HSM Topology -- 10.2.4 Learning Probabilities -- 10.2.5 Re-estimation -- 10.2.6 Redundancy -- 10.2.7 Data Preparation -- 10.2.8 Proper Redundancy Removal -- 10.3 Envelope Detection -- 10.3.1 Silence Threshold Selection -- 10.3.2 Pre-emphasis -- Contents xiii -- 10.4 Several Processes -- 10.4.1 Similarity -- 10.4.2 The Local-Global Principle -- 10.4.3 HSM Similarities -- 10.5 Conflict and Support -- 10.6 Examples and Applications -- 10.7 Predictions -- 10.8 Background Information -- 10.9 Exercises -- 11 Feature Extraction -- 11.1 Feature Extractions -- 11.2 Basic Techniques -- 11.2.1 Spectral Shaping -- 11.3 Spectral Analysis and Feature Transformation -- 11.3.1 Parametric Feature Transformations and Cepstrum -- 11.3.2 Standard Feature Extraction Techniques -- 11.3.3 Frame Energy -- 11.4 Linear Prediction Coe_cients (LPC) -- 11.5 Linear Prediction Cepstral Coe_cients (LPCC) -- 11.6 Adaptive Perceptual Local Trigonometric Transformation -- (APLTT) -- 11.7 Search -- 11.7.1 General Search Model -- 11.8 Predictions -- 11.8.1 Purpose -- 11.8.2 Linear Prediction -- 11.8.3 Mean Squared Error Minimization -- 11.8.4 Computation of Probability of an Observation Sequence -- 11.8.5 Forward and Backward Prediction -- 11.8.6 Forward-Backward Prediction -- 11.9 Background Information -- 11.10Exercises -- 12 Unsupervised Learning -- 12.1 Generalities -- 12.2 Clustering Principles -- 12.3 Cluster Analysis Methods -- 12.4 Special Methods -- 12.4.1 K-means -- 12.4.2 Vector Quantization (VQ) -- 12.4.3 Expectation Maximization (EM) -- 12.4.4 GMM Clustering -- 12.5 Background Information -- 12.6 Exercises -- xiv Contents -- 13 Markov Model and Hidden Stochastic Model -- 13.1 Markov Process -- 13.2 Gaussian Mixture Model (GMM) -- 13.3 Advantages of using GMM -- 13.4 Linear Prediction Analysis -- 13.4.1 Autocorrelation Method -- 13.4.2 Yule-Walker Approach -- 13.4.3 Covariance Method -- 13.4.4 Comparison of Correlation and Covariance methods -- 13.5 The ULS Approach -- 13.6 Comparison of ULS and Covariance Methods -- 13.7 Forward Prediction -- 13.8 Backward Prediction -- 13.9 Forward-Backward Prediction -- 13.10Baum-Welch Algorithm -- 13.11Viterbi Algorithm -- 13.12Background Information -- 13.13Exercises -- 14 Fuzzy Logic and Rough Sets -- 14.1 Rough Sets -- 14.2 Fuzzy Sets -- 14.2.1 Basis Elements -- 14.2.2 Possibility and Necessity -- 14.3 Fuzzy Clustering -- 14.4 Fuzzy Probabilities -- 14.5 Background Information -- 14.6 Exercises -- 15 Neural Networks -- 15.1 Neural Network Types -- 15.1.1 Neural Network Training -- 15.1.2 Neural Network Topology -- 15.2 Parallel Distributed Processing -- 15.2.1 Forward and Backward Uses -- 15.2.2 Learning -- 15.3 Applications to Signal Processing -- 15.4 Background Information -- 15.5 Exercises -- Part III Real Aspects and Applications -- Contents xv -- 16 Noisy Signals -- 16.1 Introduction -- 16.2 Noise Questions -- 16.3 Sources of Noise -- 16.4 Noise Measurement -- 16.5 Weights and A-Weights -- 16.6 Signal to Noise Ratio (SNR) -- 16.7 Noise Measuring Filters and Evaluation -- 16.8 Types of noise -- 16.9 Origin of noises -- 16.10Box Plot Evaluation -- 16.11Individual noise types -- 16.11.1Residual -- 16.11.2Mild -- 16.11.3Steady-unsteady Time varying Noise -- 16.11.4Strong Noise -- 16.12Solution to Strong Noise: Matched Filter -- 16.13Background Information -- 16.14Exercises -- 17 Reasoning Methods and Noise Removal -- 17.1 Generalities -- 17.2 Special Noise Removal Methods -- 17.2.1 Residual Noise -- 17.2.2 Mild Noise -- 17.2.3 Steady-Unsteady Noise -- 17.2.4 Strong Noise -- 17.3 Poisson Distribution -- 17.3.1 Outliers and Shots -- 17.3.2 Underlying probability of Shots -- 17.4 Kalman Filter -- 17.4.1 Prediction Estimates -- 17.4.2 White noise Kalman filtering -- 17.4.3 Application of Kalman filter -- 17.5 Classification, Recognition and Learning -- 17.5.1 Summary of the used concepts -- 17.6 Principle Component Analysis (PCA) -- 17.7 Reasoning Methods -- 17.7.1 Case-Based Reasoning (CBR) -- 17.8 Background Information -- 17.9 Exercises -- xvi Contents -- 18 Audio Signals and Speech Recognition -- 18.1 Generalities of Speech -- 18.2 Categories of Speech Recognition -- 18.3 Automatic Speech Recognition -- 18.3.1 System Structure -- 18.4 Speech Production Model -- 18.5 Acoustics -- 18.6 Human Speech Production -- 18.6.1 The Human Speech Generation -- 18.6.2 Excitation -- 18.6.3 Voiced Speech -- 18.6.4 Unvoiced Speech -- 18.7 Silence Regions -- 18.8 Glottis -- 18.9 Lips -- 18.10Plosive Speech Source -- 18.11Vocal-Tract -- 18.12Parametric and Non-Parametric Models -- 18.13Formants -- 18.14Strong Noise -- 18.15Background Information -- 18.16Exercises -- 19 Noisy Speech -- 19.1 Introduction -- 19.2 Colored Noise -- 19.2.1 Additional types of Colored Noise -- 19.3 Poisson Processes and Shots -- 19.4 Matched Filters -- 19.5 Shot Noise -- 19.6 Background Information -- 19.7 Exercises -- 20 Aspects Of Human Hearing -- 20.1 Human Ear -- 20.2 Human Auditory System -- 20.3 Critical Bands and Scales -- 20.3.1 Mel Scale -- 20.3.2 Bark Scale -- 20.3.3 Erb Scale -- 20.3.4 Greenwood Scale -- 20.4 Filter Banks -- 20.4.1 ICA Network -- 20.4.2 Auditory Filter Banks -- 20.4.3 Filter Banks -- Contents xvii -- 20.4.4 Mel Critical Filter Bank -- 20.5 Psycho-acoustic Phenomena -- 20.5.1 Perceptual Measurement -- 20.5.2 Human Hearing and Perception -- 20.5.3 Sound Pressure Level (SPL) -- 20.5.4 Absolute Threshold of Hearing (ATH) -- 20.6 Perceptual Adaptation -- 20.7 Auditory System and Hearing Model -- 20.8 Auditory Masking and Masking Frequency -- 20.…”
1st ed. 2022.
Format: Electronic eBookFull text (Wentworth users only)