Showing 158,121 - 158,140 results of 163,935 for search '(("klight" OR (((("slight" OR ("slightly" OR "sightly")) OR "flight") OR ((("bright" OR (((("frights" OR (("frightss" OR "rightss") OR ("rights" OR "brightsss"))) OR (("frightss" OR "rightss") OR ("rights" OR "brightsss"))) OR "fights") OR (("nights" OR "night") OR ("eights" OR "eight")))) OR "fight") OR ("weights" OR "wright"))) OR ("flightly" OR "frightsly"))) OR ("right" OR "light"))', query time: 3.13s Refine Results
  1. 158121

    Water for the fields

    New York, N.Y. : Films Media Group, 2006
    Format: Electronic Video
    Streaming video (Emerson users only)
    Streaming video (Wentworth users only)
  2. 158122
  3. 158123
  4. 158124
  5. 158125

    The Stuarts. Part 1

    [Place of publication not identified] : BBC Worldwide Ltd, 2014
    Format: Electronic Video
    Streaming video (Emerson users only)
  6. 158126

    Rebels without borders : transnational insurgencies in world politics by Salehyan, Idean

    Ithaca, N.Y. : Cornell University Press, 2009
    Format: Book


  7. 158127
  8. 158128

    Patho-biotechnology by Sleator, Roy

    Boca Raton, FL : CRC Press, an imprint of Taylor and Francis, 2008
    First edition.
    Format: Electronic eBook
    Full text (WIT users only)
  9. 158129

    The young lieutenant, or, The adventures of an army officer : a story of the great rebellion by Optic, Oliver, 1822-1897

    Boston : Lee and Shepard, 1865
    Format: Electronic eBook
    Access E-Book
    Access E-Book
  10. 158130

    The patriot

    Culver City, Calif. : Sony Pictures Home Entertainment, 2006
    Extended cut.
    Format: Video

    This item is not available through FLO. Please contact your home library for further assistance.
  11. 158131

    Hidden horrors : Japanese war crimes in World War II by Tanaka, Toshiyuki, 1949-

    Boulder, Colo. : Westview Press, 1996
    Format: Book


  12. 158132
  13. 158133
  14. 158134
  15. 158135
  16. 158136
  17. 158137

    E-CARGO and role-based collaboration : modeling and solving problems in the complex world by Zhu, Haibin

    Hoboken, New Jersey : John Wiley & Sons, Inc., 2021
    First edition.
    Table of Contents: “…-- 1.7.2 Examples of Complex Systems -- 1.8 Collaboration and Problem Solving -- 1.9 Summary -- References -- Exercises -- Chapter 2 Role Concepts -- Abstract -- Keywords -- 2.1 Terminology -- 2.2 Modeling-Roles -- 2.2.1 Evolution of Objects -- 2.2.2 Fundamental Modeling Concepts -- 2.2.3 Interfaces between Objects -- 2.2.4 Separation of Concerns -- 2.2.5 Modeling-Roles in Specification and Design -- 2.3 Roles in Agent Systems -- 2.4 Role-Based Access Control (RBAC) -- 2.4.1 Evolution of RBAC-Roles -- 2.4.2 Applications of RBAC-Roles -- 2.5 Roles in CSCW Systems -- 2.6 Roles in Social Psychology and Management -- 2.7 Convergence of Role Concepts -- 2.8 Summary -- References -- Exercises -- Part 2 Methodologies and Models -- Chapter 3 Role-Based Collaboration -- Abstract -- Keywords -- 3.1 Requirements for Role-Based Collaboration -- 3.2 Architecture of an RBC system -- 3.3 The Environment Established by Role-Based Collaboration -- 3.4 The Process of Role-Based Collaboration -- 3.5 Fundamental Principles of RBC -- 3.5.1 Object principles -- 3.5.2 Agent principles -- 3.5.3 Role principles -- 3.5.4 Group principles -- 3.6 Benefits of Role-Based Collaboration -- 3.6.1 Establish trust in collaboration -- 3.6.2 Establish Dynamics -- 3.6.3 Facilitate Interaction -- 3.6.4 Support adaptation -- 3.6.5 Information Sharing -- 3.6.6 Other benefits -- 3.7 Summary -- References -- Exercises -- Chapter 4 The E-CARGO Model -- Abstract -- Keyword -- 4.1 First Class Components -- 4.1.1 Objects and Classes -- 4.1.2 Roles and Environments -- 4.1.3 Agents and Groups -- 4.2 Second Class Components -- 4.2.1 Users or Human Users -- 4.2.2 Message -- 4.2.3 System -- 4.3 Fundamental Relationships in E-CARGO -- 4.3.1 The Relations among Roles -- 4.3.1.1 Role Classes and Instances -- 4.3.1.2 Inheritance Relation -- 4.3.1.3 Promotion relations -- 4.3.1.4 Report-to Relations -- 4.3.1.5 Request relations -- 4.1.3.6 Derived relations -- 4.1.3.7 Conflict relations -- 4.3.2 The Relations between Roles and Agents -- 4.3.3 The Relations between Agents -- 4.3.4 Properties of an RBC system and their Applications -- 4.4 Kernel Mechanisms of RBC -- 4.4.1 Primitive roles -- 4.4.2 Fundamental Classes -- 4.4.3 Implementation -- 4.5 Related Work -- 4.6 Summary -- References -- Exercises -- Chapter 5 Group Role Assignment (GRA) -- Abstract -- Keywords -- 5.1 Role Assignment -- 5.2 A Real-World Problem -- 5.3 Extended Expression of the E-CARGO Model -- 5.4 Group Role Assignment Problems -- 5.4.1 Simple role assignment -- 5.4.2 Rated group role assignment -- 5.4.3 Weighted role assignment -- 5.5 General Assignment Problem and the K-M Algorithm -- 5.6 Solutions to GRA Problems -- 5.7 Implementation and Performance Experiments -- 5.8 Performance Analysis -- 5.9 Case Study by Simulation -- 5.10 Related Work -- 5.11 Summary -- References -- Exercises -- Chapter 6 Group Role Assignment with Constraints: GRA+ -- Abstract -- Keywords -- 6.1 Group Multi-Role Assignment (GMRA) -- 6.1.1 A Real-World Scenario -- 6.1.2 Problem Formalization -- 6.1.3 The CPLEX solution and its Performance Experiments -- 6.1.4 Improvement of the CPLEX Solution -- 6.1.5 Comparisons -- 6.1.6 Another Real-World Example -- 6.2 Group Role Assignment with Conflicting Agents (GRACA) -- 6.2.1 A Real-World Scenario -- 6.2.2 Problem Formalization -- 6.2.3 The Benefits of Avoiding Conflicts -- 6.2.4 GRACAR/G Problems Are Subproblems of an NP-Complete Problem -- 6.2.5 Solutions with CPLEX -- 6.3 Group Role Assignment with Cooperation and Conflict Factors -- 6.3.1 A Real-World Scenario -- 6.3.2 Problem Formalization -- 6.3.3 A Practical Solution -- 6.3.4 Performance Experiments -- 6.3.5 The Benefits -- 6.3.6 Cooperation and conflict Factor Collection -- 6.4 Related Work -- 6.5 Summary -- References -- Exercises -- Chapter 7 Group Role Assignment with Multiple Objectives: GRA++ -- Abstract -- Keywords -- 7.1 Group Role Assignment with Budget Constraints (GRABC) -- 7.1.1 A Real-World Scenario -- 7.1.2 Problem Formalization -- 7.1.3 Solutions with an LP Solver -- 7.1.4 Simulations of GRABC-WS and GRABC-Syn -- 7.1.5 Performance Experiments and improvements -- 7.1.6 Synthesis and a case Study -- 7.2 Good at Many things and Expert in One (GMEO) -- 7.2.1 A Real-World Scenario -- 7.2.2 Problem Formalizations -- 7.2.3 A Solution with CPLEX -- 7.2.4 Performance Experiments and Improvements -- 7.2.5 A Simple Formalization of GMEO with an Efficient Solution -- 7.2.6 A More Efficient Solution for GMEO-1 -- 7.3 Related Work -- 7.4 Summary -- References -- Exercises -- Chapter 8 Solving Engineering Problems with GRA -- Abstract -- Keywords -- 8.1 Group Role Assignment with Agents' Busyness Degrees -- 8.1.1 A Real-World Scenario -- 8.1.2 Problem Formalization -- 8.1.3 Solutions -- 8.1.4 Simulations and Benefits -- 8.2 Group Multi-Role Assignment with Coupled Roles -- 8.2.1 A Real-World Scenario -- 8.2.2 The Problem Specification -- 8.2.3 The Solutions with CPLEX and Initial Results -- 8.2.4 Verification Experiments -- 8.3 Most Economical Redundant Assignment -- 8.3.1 A Real-World Scenario -- 8.3.2 Problem Formalizations -- 8.3.3 A Solution with CPLEX -- 8.3.4 A new Form of the MERA Problem and a More Efficient Solution -- 8.3.5 Experiments and Comparisons -- 8.4 Group Role Assignment with Agents' Preferences -- 8.4.1 A Real-World Scenario -- 8.4.2 Problem Formalization -- 8.4.3 The Benefits of Considering Agents' Preferences -- 8.5 Related Work -- 8.6 Summary -- References -- Exercises -- Chapter 9 Role Transfer -- Abstract -- Keywords -- 9.1 Role Transfer Problems -- 9.1.1 Algorithm to Find a Partition -- 9.1.2 Role Transfer Algorithm with Matrices -- 9.1.3 Algorithm for Role Transfer with the E-CARGO Model -- 9.2 The M-M Role Transfer Problems -- 9.2.1 M-1 Problem -- 9.2.2 1-M Problem -- 9.2.3 M-M Problem -- 9.3 From M-M RTPs to Role Assignment Problems -- 9.4 Temporal M-M Role Transfer Problems -- 9.4.1 Temporal Transfer with Weak Restriction -- 9.4.2 Temporal Transfer with Strong Restriction -- 9.4.3 A Near-Optimal Solution to SRTP with the Kuhn-Munkres Algorithm -- 9.4.4 Performance Experiments -- 9.5 Role Transfer Tool -- 9.6 Related work -- 9.7 Summary -- References -- Exercises -- Chapter 10 Adaptive Collaboration Systems -- Abstract -- Keywords -- 10.1 Adaptation and Adaptability -- 10.2 A Real-World Problem -- 10.3 Group Performance and its parameters -- 10.4 Adaptive Collaboration -- 10.4.1 A scenario for a future battle -- 10.4.2 Apply E-CARGO and Related Algorithms to Solve the Problem -- 10.4.3 A new qualification model -- 10.5 The Architecture and the Self-* Properties of an Adaptive Collaboration System -- 10.6 A General Approach to AC -- 10.7 Related Work -- 10.8 Summary -- References -- Exercises -- Part 3 Applications -- Chapter 11 Team Performance -- Abstract -- Keywords -- 11. 1 Team Performance -- 11.2 Static Team Performance -- 11.2.1 Modeling Team Performance with the E-CARGO Model -- 11.2.2 Refine the Predicted Team Performance by Introducing More Constraints -- 11.2.3 Case Study -- 11.3 Dynamic Team Performance -- 11.3.1 A Typical Dynamic Scenario of Collaboration -- 11.3.2 Formalization of dynamic team performance -- 11.3.3 Simulation Design -- 11.3.4 Simulation Results and Analysis -- 11.4 Related Work -- 11.5 Summary -- References -- Exercises -- Chapter 12 Applications of RBC and E-CARGO -- Abstract -- Keywords -- 12.1 Role-Based Human-Computer Interaction -- 12.1.1 Natural Intelligence and Artificial Intelligence -- 12.1.2 Interaction -- 12.1.3 Characteristics of Interaction -- 12.1.4 Classification of Interactions -- 12.1.5 The differences between HCI and AI3 -- 12.1.6 Shared models for interaction -- 12.1.7 Roles as shared models for interaction -- 12.1.8 Scenarios of Role-Based Interaction -- 12.1.9 Case Study: Restrain Mental Workload with Roles -- 12.2 When to Re-staff a Late Project -- 12.2.1 Formalization of the Problem -- 12.2.2 A Solution Based on GRA -- 12.2.3 Simulations -- 12.2.4 Performances -- 12.2.5 Case study -- 12.3 An Efficient Outpatient Scheduling Approach -- 12.3.1 A Real-World Outpatient Scheduling Problem -- 12.3.2 Collaborative Outpatient Scheduling - Our Strategy -- 12.3.3 From the Outpatient Problem to the Group Role Assignment Problem -- 12.3.4 The Algorithm and Complexity -- 12.4 Related Work -- 12.5 Chapter Summary -- References -- Exercises -- Chapter 13 Social Simulation with RBC and E-CARGO -- Abstract -- Keywords -- 13.1 Social Systems, Organizations, and Individuals -- 13.2 Establishing the Requirement of Social Simulation -- 13.3 Meeting the requirements of Social Simulation with E-CARGO -- 13.4 Social Simulation Method with RBC and E-CARGO -- 13.5 Case Study 1: Peer Review and Improvement -- 13.5.1 Peer Review -- 13.5.2 The Benefits Obtained by GRA -- 13.6 Case Study 2: Collectivism or Individualism -- 13.6.1 How to Express Collectivism and Individualism -- 13.6.2 Overall team performances of Collectivism and Individualism -- 13.6.3 Simulations and Results -- 13.7 Case Study 3: How to Acquire the Preferred Position in a Team -- 13.7.1 A Real-World Scenario -- 13.7.2 Policies and Simulation Experiments -- 13.7.3 The Effects to the Group Performance -- ...…”
    Format: Electronic eBook
    Full text (Wentworth users only)
  18. 158138

    Applied Impact Mechanics. by Lakshmana Rao, C.

    Newark : Wiley, 2016
    Table of Contents: “…Preface v <p>List of Figures xv</p> <p>List of Tables xix</p> <p>List of Symbols xxi</p> <p><b>Chapter 1: Introduction 1-18</b></p> <p>1.1 General Introduction to Engineering Mechanics 2</p> <p>1.2 General Introduction to Fracture Mechanics 3</p> <p>1.3 Impact Mechanics -- Appreciating Impact Problems in Engineering 5</p> <p>1.4 Historical Background 8</p> <p>1.5 Percussion, Concussion, Collision and Explosion 10</p> <p>1.6 Summary 11</p> <p>Bibliography 12</p> <p><b>Chapter 2: Rigid Body Impact Mechanics 19-34</b></p> <p>2.1 Introduction 19</p> <p>2.2 Impulse -- Momentum Equations 21</p> <p>2.3 Coefficient of Restitution -- Classical Definitions 21</p> <p>2.3.1 Kinematic Coefficient of Restitution 22</p> <p>2.3.2 Measurement of Coefficient of Restitution 22</p> <p>2.3.3 Relative Assessment of Various Impacts in Sports 23</p> <p>2.4 Coefficient of Restitution -- Alternate Definition 24</p> <p>2.4.1 Kinetic Coefficient of Restitution 24</p> <p>2.4.1.1 Case Study: Rebound of Colliding Vehicles 25</p> <p>2.4.2 Energy Coefficient of Restitution 27</p> <p>2.4.2.1 Application in Vehicle Collisions 28</p> <p>2.5 Oblique Impact -- Role of Friction 29</p> <p>2.6 Limitations of Rigid Body Impact Mechanics 31</p> <p>2.7 Summary 31</p> <p>Exercise Problems 32</p> <p>Bibliography 34</p> <p><b>Chapter 3: One-Dimensional Impact Mechanics of Deformable Bodies 35-54</b></p> <p>3.1 Introduction 35</p> <p>3.2 Single Degree of Freedom Idealization of Impact Process 36</p> <p>3.2.1 Governing Equations of Single Degree of Freedom (SDOF) System 37</p> <p>3.2.2 Forced Vibrations due to Exponentially Decaying Loads 38</p> <p>3.3 1-D Wave Propagation in Solids Induced by Impact 41</p> <p>3.3.1 Longitudinal Waves in Thin Rods 42</p> <p>3.3.1.1 The Governing Equation for Waves in Long Rods 42</p> <p>3.3.1.2 Free Vibrations in a Finite Rod 46</p> <p>3.3.2 Flexural Waves in Thin Rods 47</p> <p>3.3.2.1 The Governing Equation for Flexural Waves in Rods 47</p> <p>3.3.2.2 Free Vibrations of Finite Beams 48</p> <p>3.3.3 The D'Alembert's Solution for Wave Equation 50</p> <p>3.4 Summary 51</p> <p>Exercise Problems 52</p> <p>Bibliography 54</p> <p><b>Chapter 4: Multi-Dimensional Impact Mechanics of Deformable Bodies 55-78</b></p> <p>4.1 Introduction 55</p> <p>4.2 Analysis of Stress 56</p> <p>4.2.1 Stress Components on an Arbitrary Plane 56</p> <p>4.2.2 Principal Stresses and Stress Invariants 57</p> <p>4.2.3 Mohr's Circles 58</p> <p>4.2.4 Octahedral Stresses 58</p> <p>4.2.5 Decomposition into Hydrostatic and Pure Shear States 59</p> <p>4.2.6 Equations of Motion of a Body in Cartesian Coordinates 60</p> <p>4.2.7 Equations of Motion of a Body in Cylindrical Coordinates 61</p> <p>4.2.8 Equations of Motion of a Body in Spherical Coordinates 62</p> <p>4.3 Analysis of Strain 63</p> <p>4.3.1 Deformation in the Neighborhood of a Point 63</p> <p>4.3.2 Compatibility Equations 64</p> <p>4.3.3 Strain Deviator 65</p> <p>4.4 Linearised Stress-Strain Relations 65</p> <p>4.4.1 Stress-Strain Relations for Isotropic Materials 66</p> <p>4.5 Waves in Infinite Medium 67</p> <p>4.5.1 Longitudinal Waves (Primary/Dilatational/Irrotational Waves) 67</p> <p>4.5.1.1 Longitudinal Waves 68</p> <p>4.5.1.2 The Governing Equations for Longitudinal Waves 68</p> <p>4.5.2 Transverse Waves (Secondary/Shear/Distortional/Rotational Wave) 69</p> <p>4.5.2.1 Transverse Waves 69</p> <p>4.5.2.2 The Governing Equations for Transverse Waves 70</p> <p>4.6 Waves in Semi-Infinite Media 70</p> <p>4.6.1 Surface Waves 71</p> <p>4.6.2 Symmetric Rayleigh-Lamb Spectrum in Elastic Layer 74</p> <p>4.7 Summary 76</p> <p>Exercise Problems 76</p> <p>Bibliography 78</p> <p><b>Chapter 5: Experimental Impact Mechanics 79-131</b></p> <p>5.1 Introduction 80</p> <p>5.2 Quasi-Static Material Tests 81</p> <p>5.3 Pendulum Impact Tests 87</p> <p>5.4 About High Strain Rate Testing of Materials 90</p> <p>5.5 Split Hopkinson's Pressure Bar Test 91</p> <p>5.5.1 Historical Background and Significance 91</p> <p>5.5.2 Improvements in SHPB Test Apparatus 92</p> <p>5.5.3 Principle of SHPB Test 93</p> <p>5.5.4 Theory Behind SHPB 95</p> <p>5.5.5 Design of Pressure Bars for a SHPB Apparatus 97</p> <p>5.5.6 Applications, Availability and Few Results 100</p> <p>5.6 Taylor Cylinder Impact Test 103</p> <p>5.6.1 Methodology 104</p> <p>5.6.2 Strain Rates 107</p> <p>5.6.3 Limitations and Improvements 107</p> <p>5.6.4 Case Study-1: Experiments with a Paraffin Wax 109</p> <p>5.6.5 Case Study-2: Experiments with Steel Cylinders 109</p> <p>5.7 Drop Impact Test 110</p> <p>5.7.1 Drop Specimen Test (DST) 111</p> <p>5.7.1.1 Few Standards for DST by Free Fall 113</p> <p>5.7.1.2 Experimental Setup for DST 113</p> <p>5.7.1.3 DST Procedure 115</p> <p>5.7.1.4 A Case Study: DST of a helicopter in NASA 116</p> <p>5.7.2 Drop Weight Test (DWT) 118</p> <p>5.7.2.1 Experimental Setup for DWT 119</p> <p>5.7.2.2 Case Study-1: DWT to study fracture process in structural concrete 121</p> <p>5.7.2.3 Case Study-2: DWT tower for applying both compressive and 124</p> <p>5.8 Summary 125</p> <p>Exercise Problems 126</p> <p>References 127</p> <p><b>Chapter 6: Modeling Deformation and Failure Under Impact 133-169</b></p> <p>6.1 Introduction 133</p> <p>6.2 Equation of State 135</p> <p>6.2.1 Gruneisen Parameter 135</p> <p>6.2.2 Shock-Hugoniot Curve 136</p> <p>6.2.3 Rankine-Hugoniot Conditions 137</p> <p>6.2.4 Mie-Gruneisen (Shock) Equation of State 139</p> <p>6.2.4.1 Implementation of Mie-Gruneisen Equation of State 141</p> <p>6.2.5 Murnaghan Equation of State 142</p> <p>6.2.6 Linear Equation of State 142</p> <p>6.2.7 Polynomial Equation of State 143</p> <p>6.2.8 High Explosive Equation of State 143</p> <p>6.3 Constitutive Models for Material Deformation and Plasticity 144</p> <p>6.3.1 Plasticity 145</p> <p>6.3.2 Plastic Isotropic or Kinematic Hardening Material Model 147</p> <p>6.3.3 Thermo-Elastic-Plastic Material Model 148</p> <p>6.3.4 Power-Law Isotropic Plasticity Material Model 148</p> <p>6.3.5 Johnson-Cook Material Model 149</p> <p>6.3.5.1 Determination of Parameters in Johnson-Cook Model 150</p> <p>6.3.6 Zerilli-Armstrong Material Model 151</p> <p>6.3.6.1 Modified Zerilli-Armstrong Material Model 151</p> <p>6.3.6.2 Determination of Parameters in Zerilli-Armstrong Model 152</p> <p>6.3.7 Combined Johnson-Cook and Zerilli-Armstrong Material Model 152</p> <p>6.3.8 Steinberg-Guinan Material Model 153</p> <p>6.3.9 Barlat's 3 Parameter Plasticity Material Model 153</p> <p>6.3.10 Orthotropic Material Model 154</p> <p>6.3.11 Summary of Material Models 154</p> <p>6.4 Failure/Damage Models 155</p> <p>6.4.1 Void Growth and Fracture Strain Model 156</p> <p>6.4.1.1 Void Growth Model 156</p> <p>6.4.1.2 Fracture Strain Model 157</p> <p>6.4.2 Johnson-Cook Failure Model 158</p> <p>6.4.3 Unified Model of Visco-plasticity and Ductile Damage 159</p> <p>6.4.4 Johnson-Holmquist Concrete Damage Model 160</p> <p>6.4.4.1 Determination of Parameters in Johnson-Holmquist Model 161</p> <p>6.4.5 Chang-Chang Composite Damage Model 161</p> <p>6.4.6 Orthotropic Damage Model 162</p> <p>6.4.7 Plastic Strain Limit Damage Model 162</p> <p>6.4.8 Material Stress/Strain Limit Damage Model 162</p> <p>6.4.9 Implementation of Damage 163</p> <p>6.4.9.1 Discrete Technique 163</p> <p>6.4.9.2 Operator Split Technique 163</p> <p>6.5 Temperature Rise During Impact 164</p> <p>6.6 Summary 165</p> <p>Exercise Problems 166</p> <p>References 167</p> <p><b>Chapter 7: Computational Impact Mechanics 171-219</b></p> <p>7.1 Introduction 171</p> <p>7.2 Principles of Numerical Formulations 174</p> <p>7.2.1 Classical Continuum Methods: Lagrangean, Eulerian and 174</p> <p>7.2.1.1 Lagrangean Formulation 174</p> <p>7.2.1.2 Eulerian Formulation 176</p> <p>7.2.1.3 Arbitrary Lagrangean- Eulerian Coupling (ALE-Formulation) 177</p> <p>7.2.2 Particle Based Methods 179</p> <p>7.2.2.1 Smooth Particle Hydrodynamics Method 180</p> <p>7.2.2.2 Discrete Element Method 183</p> <p>7.2.3 Meshless Methods 185</p> & l.…”
    Format: Electronic eBook
    Full text (Emerson users only)
    Full text (Emmanuel users only)
    Full text (NECO users only)
    Full text (MCPHS users only)
    Access E-Book
    Full text (Wentworth users only)
  19. 158139

    Plant biomass derived materials : sources, extractions, and applications

    Weinheim, Germany : Wiley-VCH, 2024
    Table of Contents: “…Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Biomass - An Environmental Concern -- 1.1 Introduction -- 1.2 Biomass as an Energy Source -- 1.3 The Environmental Concern of Biomass -- 1.4 Air Pollution -- 1.4.1 Gaseous Emissions -- 1.4.2 Dust -- 1.4.3 Biomass Ash (Bottom Ash) -- 1.4.4 Fly Ash -- 1.4.5 Carbon Monoxide Poisoning -- 1.5 Water Use and Water Pollution -- 1.6 Impact on Soil -- 1.7 Indoor Pollution -- 1.8 Deforestation and Land Degradation -- 1.9 Health Hazards -- 1.10 Non-respiratory Illness -- 1.10.1 In Children -- 1.10.1.1 Lower Birth Weight -- 1.10.1.2 Nutritional Deficiency -- 1.10.2 Respiratory Illness in Adults -- 1.10.2.1 Interstitial Lung Disease -- 1.10.2.2 Chronic Obstructive Pulmonary Disease (COPD) -- 1.10.2.3 Tuberculosis -- 1.10.2.4 Lung Cancer -- 1.10.3 Non-respiratory Illness in Adults -- 1.10.3.1 Cardiovascular Disease -- 1.10.3.2 Cataracts -- 1.11 Safe Disposal of Biomass -- 1.12 The Bioeconomy of the Biomass Utilization -- 1.13 Biowaste-Derived Functional Materials -- 1.14 Conclusion -- References -- Chapter 2 Chemistry of Biomass -- 2.1 Introduction -- 2.2 Cellulose -- 2.3 Hemicellulose -- 2.3.1 Xylans -- 2.3.2 Mannans -- 2.3.3 Arabinogalactans -- 2.4 Pectin -- 2.4.1 Homogalacturonan -- 2.4.1.1 Rhamnogalacturonan I -- 2.4.1.2 Rhamnogalacturonan II -- 2.5 Lignin -- 2.5.1 Lignin Valorization -- 2.6 Reserve Compounds -- 2.6.1 Starch -- 2.6.2 Sucrose -- 2.6.3 Lipids -- 2.6.3.1 Fatty Acids -- 2.6.3.2 Triacylglycerols -- 2.7 Natural Compounds (Secondary Metabolites) -- 2.7.1 Terpenoids -- 2.7.2 Phenylpropanoids -- 2.7.3 Alkaloids -- 2.8 Conclusion -- References -- Chapter 3 Lignin from Biomass − Sources, Extraction, and Application -- 3.1 Sources -- 3.2 Extraction -- 3.2.1 Alkaline Process -- 3.2.1.1 Sulfur Processes -- 3.2.1.2 Sulfur-Free Processes -- 3.2.2 Acidic Process.…”
    Format: Electronic eBook
    Full text (Wentworth users only)
  20. 158140

    Advanced materials, structures and mechanical engineering

    London : Taylor & Francis, 2016
    Table of Contents: “…Ushkov & V.A. Smirnov -- Weight optimized main landing gears for UAV under impact loading for evaluation of explicit dynamics study / R.F. …”
    Format: Electronic Conference Proceeding eBook
    Full text (WIT users only)