Search alternatives:
"slight" » "sight" (Expand Search), "slightly" (Expand Search)
"sightly" » "slightly" (Expand Search)
"nights" » "insights" (Expand Search)
"eights" » "heights" (Expand Search), "weights" (Expand Search), "eighth" (Expand Search)
"wheights" » "whheights" (Expand Search), "whweights" (Expand Search), "wheighth" (Expand Search), "heights" (Expand Search), "weights" (Expand Search)
"fights" » "mights" (Expand Search)
"fight" » "might" (Expand Search)
"flightly" » "slightly" (Expand Search)
"slight" » "sight" (Expand Search), "slightly" (Expand Search)
"sightly" » "slightly" (Expand Search)
"nights" » "insights" (Expand Search)
"eights" » "heights" (Expand Search), "weights" (Expand Search), "eighth" (Expand Search)
"wheights" » "whheights" (Expand Search), "whweights" (Expand Search), "wheighth" (Expand Search), "heights" (Expand Search), "weights" (Expand Search)
"fights" » "mights" (Expand Search)
"fight" » "might" (Expand Search)
"flightly" » "slightly" (Expand Search)
-
158141
Understanding and Reducing Landslide Disaster Risk Volume 2 From Mapping to Hazard and Risk Zonation
Cham : Springer International Publishing : Imprint: Springer, 2021Table of Contents: “…-- Semi-automatic Landslide Inventory Mapping with Multiresolution Segmentation Process: A Case Study from Ulus District (Bartin, NW Turkey) -- Landslide mapping based on UAV and SfM – Case study of the 2018 Prnjavor Čuntićki landslide, Croatia -- Developing recognition and simple mapping by UAV/SfM for local resident in mountainous area in Vietnam – A case study in Po Xi Ngai Community, Laocai province -- Landslide activity classification based on Sentinel-1 satellite radar interferometry data -- Updating Landslide Activity State and Intensity by Means of Persistent Scatterer Interferometry -- Damming predisposition of river networks: a mapping methodology -- Landslides along Halong-Vandon Expressway in Quang Ninh province, Vietnam -- Landslide hazard assessment and zonation – susceptibility modelling: New data on geological conditions of landslide activity on Vorobyovy Gory (Moscow, Russia) -- Impact of agricultural management in vineyards to landslides susceptibility in Italian Apennines -- Landslide susceptibility in two secondary rivers of La Ciénega watershed, Nevado de Toluca volcano, Mexico -- An Ordinal Scale Weighting Approach for Susceptibility Mapping Around Tehri Dam, Uttarakhand, India -- Potential Analysis of Deep-seated Landslides Caused by Typhoon Morakot Using Slope Unit -- Landslide susceptibility assessment using binary logistic regression in northern Philippines Landslide Hazard Mapping of Penang Island Malaysia based on Multilayer Perceptron Approach -- Landslide Susceptibility Mapping Based on the Deep Belief Network: A Case Study in Sichuan Province, China -- A Comparative study of deep learning and conventional neural network forevaluating landslide susceptibility using landslide initiation zones -- Landslide susceptibility assessment by ensemble-based Machine Learning models -- Application of Machine Learning Algorithms and Their Ensemble for Landslide Susceptibility Mapping -- Overcoming data scarcity related issues for landslide susceptibility modeling with machine learning -- Practical accounting of uncertainties in data-driven landslide susceptibility models. …”
1st ed. 2021.
Format: Electronic eBookFull text (Wentworth users only)
-
158142
The Semantic Web – ISWC 2012 11th International Semantic Web Conference, Boston, MA, USA, November 11-15, 2012, Proceedings, Part I
Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012Table of Contents: “…Research Track -- MORe: Modular Combination of OWL Reasoners for Ontology Classification -- A Formal Semantics for Weighted Ontology -- Personalised Graph-Based Selection of Web APIs -- Instance-Based Matching of Large Ontologies Using Locality-Sensitive Hashing -- Automatic Typing of DBpedia Entities -- Performance Heterogeneity and Approximate Reasoning in Description Logic Ontologies -- Concept-Based Semantic Difference in Expressive Description Logics -- SPLODGE: Systematic Generation of SPARQL Benchmark Queries for Linked Open Data -- RDFS Reasoning on Massively Parallel Hardware -- An Efficient Bit Vector Approach to Semantics-Based Machine Perception in Resource-Constrained Devices -- Semantic Enrichment by Non-experts: Usability of Manual Annotation Tools -- Ontology-Based Access to Probabilistic Data with OWL QL -- Predicting Reasoning Performance Using Ontology Metrics -- Formal Verification of Data Provenance Records -- Cost Based Query Ordering over OWL Ontologies -- Robust Runtime Optimization and Skew-Resistant Execution of Analytical SPARQL Queries on Pig -- Large-Scale Learning of Relation-Extraction Rules with Distant Supervision from the Web -- The Not-So-Easy Task of Computing Class Subsumptions in OWL RL -- Strabon: A Semantic Geospatial DBMS -- DeFacto - Deep Fact Validation -- Feature LDA: A Supervised Topic Model for Automatic Detection of Web API Documentations from the Web -- Efficient Execution of Top-K SPARQL Queries -- Collaborative Filtering by Analyzing Dynamic User Interests Modeled by Taxonomy -- Link Discovery with Guaranteed Reduction Ratio in Affine Spaces with Minkowski Measures -- Hitting the Sweetspot: Economic Rewriting of Knowledge Bases -- Mining Semantic Relations between Research Areas -- Discovering Concept Coverings in Ontologies of Linked Data Sources -- Ontology Constraints in Incomplete and Complete Data -- A Machine Learning Approach for Instance Matching Based on Similarity Metrics -- Who Will Follow Whom? …”
Format: Electronic eBookFull text (Wentworth users only).
Full text (Wentworth users only).
-
158143
Natural Language Processing and Chinese Computing 10th CCF International Conference, NLPCC 2021, Qingdao, China, October 13–17, 2021, Proceedings, Part I
Cham : Springer International Publishing : Imprint: Springer, 2021Table of Contents: “…-- Chinese Macro Discourse Parsing on Dependency Graph Convolutional Network -- Predicting Categorial Sememe for English-Chinese Word Pairs via Representations in Explainable Sememe Space -- Multi-Level Cohesion Information Modeling for Better Written and Dialogue Discourse Parsing -- ProPC: A Dataset for In-domain and Cross-Domain Proposition Classification Tasks -- CTRD: A Chinese Theme-Rheme Discourse Dataset -- Machine Translation and Multilinguality -- Learning to Select Relevant Knowledge for Neural Machine Translation -- Contrastive Learning for Machine Translation Quality Estimation -- Sentence-State LSTMs for Sequence-to-Sequence Learning -- Guwen-UNILM: Machine Translation Between Ancient and Modern Chinese Based on Pre-Trained Models -- Adaptive Transformer for Multilingual Neural Machine Translation -- Improving Non-Autoregressive Machine Translation with Soft-Masking -- Machine Learning for NLP -- AutoNLU: Architecture Search for Sentence and Cross-sentence Attention Modeling with Re-designed Search Space -- AutoTrans: Automating Transformer Design via Reinforced Architecture Search -- A Word-level Method for Generating Adversarial Examples Using Whole-sentence Information -- RAST: A Reward Augmented Model for Fine-Grained Sentiment Transfer -- Pre-trained Language models for Tagalog with Multi source data -- Accelerating Pretrained Language Model Inference Using Weighted Ensemble Self-Distillation -- Information Extraction and Knowledge Graph -- Employing Sentence Compression to improve Event Coreference Resolution -- BRCEA: Bootstrapping Relation-aware Cross-lingual Entity Alignment -- Employing Multi-granularity Features to Extract Entity Relation in Dialogue -- Attention Based Reinforcement Learning with Reward Shaping for Knowledge Graph Reasoning -- Entity-Aware Relation Representation Learning for Open Relation Extraction -- ReMERT: Relational Memory-based Extraction for Relational Triples -- Recognition of Nested Entity with Dependency Information -- HAIN: Hierarchical Aggregation and Inference Network for Document-Level Relation Extraction -- Incorporate Lexicon into Self-training: A Distantly Supervised Chinese Medical NER -- Summarization and Generation -- Diversified Paraphrase Generation with Commonsense Knowledge Graph -- Explore Coarse-grained Structures for Syntactically Controllable Paraphrase Generation -- Chinese Poetry Generation with Metrical Constraints -- CNewSum: A Large-scale Chinese News Summarization Dataset with Human-annotated Adequacy and Deducibility Level -- Question Generation from Code Snippets and Programming Error Messages -- Extractive Summarization of Chinese Judgment Documents via Sentence Embedding and Memory Network -- Question Answering -- ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension -- EviDR: Evidence-Emphasized Discrete Reasoning for Reasoning Machine Reading Comprehension -- Dialogue Systems -- Knowledge-Grounded Dialogue with Reward-Driven Knowledge Selection -- Multi-Intent Attention and Top-k Network with Interactive Framework for Joint Multiple Intent Detection and Slot Filling -- Enhancing Long-Distance Dialogue History Modeling for Better Dialogue Ellipsis and Coreference Resolution -- Exploiting Explicit and Inferred Implicit Personas for Multi-turn Dialogue Generation -- Few-Shot NLU with Vector Projection Distance and Abstract Triangular CRF -- Cross-domain Slot Filling with Distinct Slot Entity and Type Prediction -- Social Media and Sentiment Analysis -- Semantic Enhanced Dual-channel Graph Communication Network for Aspect-based Sentiment Analysis -- Highway-Based Local Graph Convolution Network For Aspect Based Sentiment Analysis -- Dual Adversarial Network Based on BERT for Cross-domain Sentiment Classification -- Syntax and Sentiment Enhanced BERT for Earliest Rumor Detection -- Aspect-Sentiment-Multiple-Opinion Triplet Extraction -- Locate and Combine: A Two-Stage Framework for Aspect-Category Sentiment Analysis -- Emotion Classification with Explicit and Implicit Syntactic Information -- MUMOR:A Multimodal Dataset for Humor Detection in Conversations -- NLP Applications and Text Mining -- Advertisement Extraction from Content Marketing Articles via Segment-aware Sentence Classification -- Leveraging Lexical Common-Sense Knowledge for Boosting Bayesian Modeling -- Aggregating inter-viewpoint relationships of user's review for accurate recommendation -- A Residual Dynamic Graph Convolutional Network for Multi-label Text Classification -- Sentence Ordering by Context-enhanced Pairwise Comparison -- A Dual-Attention Neural Network for Pun Location and Using Pun-Gloss Pairs for Interpretation -- A Simple Baseline for Cross-domain Few-shot Text Classification -- Shared Component Cross Punctuation Clauses Recognition in Chinese -- BERT-KG:A Short Text Classification Model Based on Knowledge Graph and Deep Semantics -- Uncertainty-aware Self-paced Learning for Grammatical Error Correction -- Metaphor Recognition and Analysis via Data Augmentation -- Exploring Generalization Ability of Pretrained Language Models on Arithmetic and Logical Reasoning -- Multimodality and Explainability -- Skeleton-Based Sign Language Recognition with Attention-enhanced Graph Convolutional Networks -- XGPT: Cross-modal Generative Pre-Training for Image Captioning -- An Object-Extensible Training Framework for Image Captioning -- Relation-aware Multi-hop Reasoning for Visual Dialog -- Multi-Modal Sarcasm Detection Based on Contrastive Attention Mechanism.…”
1st ed. 2021.
Format: Electronic eBookFull text (Wentworth users only)
Full text (Wentworth users only)
-
158144
Advances in Acoustic Emission Technology Proceedings of the World Conference on Acoustic Emission–2013
New York, NY : Springer New York : Imprint: Springer, 2015Table of Contents: “…Part I: Instrumentation -- The Development of High Speed Wi-Fi Wireless Acoustic Emission System -- State of the Art Wireless Acoustic Emission System for Structure Health Monitoring -- Some Benefits of Storing AE Data in a Modern Data Base Format -- Calibration Principle for Acoustic Emission Sensor Sensitivity -- Development of a Pipeline Leakage Location Instrument Based on Acoustic Waves -- Part II: Signal Processing and Analysis -- On Assessing the Influence of Intermittent Acquisition and Moving Window on the Results of AE Measurements -- Robust Broadband Adaptive Beamforming Based on Probability Constraint -- Near-field Noise Sources Localization in Presence of Interference -- Noise Diagnostics at AE Monitoring of Hazardous Industrial Assets -- AE Sources Location on Irregular-Shaped Objects Using 3D-Grid Method -- Numerical Simulation of Wave-guiding Properties and Optimization Design for Wave-guiding Rod -- Near-field Beamforming Performance Analysis for Acoustic Emission Source Localization Based on Finite Element Simulation -- Intelligent Evaluation Method of Tank Bottom Corrosion Status Based on Improved BP Artificial Neural Network -- The Research of Backward Deducing the Peak Frequency of Acoustic Emission Signals in Different Array -- Analysis and Research of Acoustic Emission Signal of Rolling Element Bearing Fatigue -- Research on Compression Method of Acoustic Emission Signal Based on Wavelet Transform -- Feature Extraction of Corrosion Acoustic Emission Signals Based on Genetic-Matching Pursuit Algorithm -- Part III: Material Characteristics -- Damage Evaluation in Consideration of Distance Decay and Frequency Characteristics of Elastic Wave -- Characteristic Identification of Cracking Acoustic Emission Signals in Concrete Beam Based on Hilbert-Huang Transform -- Acoustic Emission from Elevator Wire Ropes during Tensile Testing -- Effect of Specimen Thickness on Fatigue Crack Propagation and Acoustic Emission Behaviors in Q345 Steel -- Acoustic Emission Behavior of Titanium during Tensile Deformation -- Study on Characteristics of Acoustic Emission and Position Entropy of Q345R in Tensile Loading at Room Temperature -- Acoustic Emission Behavior of 12MnNiVR under Stretching -- Statistical Analysis of Events of Random Damage in Assessing Fracture Process in Paper-sheets under Tensile Load -- The Use of Acoustic Emission for the Construction Generalized Fatigue Diagram of Metals and Alloys -- Deflection on Hit-Count Curves in Acoustic Emission could reflect the Damage Extent of C/C Composite Material Structure -- Acoustic Research on the Damage Mechanism of Carbon Fiber Composite Materials -- Damage and Toughening Analysis of Ceramics by AE Location Method -- Acoustic Emission Tomography to Improve Source Location in Concrete Material using SART -- Experimental Research on Tensile Process of Carbon Fiber Composite Materials Basing on Acoustic Emission -- Concrete Crack Damage Location Based on Piezoelectric Composite Acoustic Emission Sensor -- Part IV: Structure -- Visualization of Damage in RC Bridge Deck for Bullet Trains with AE Tomography -- Acoustic Emission for Structural Integrity Assessment of Wind Turbine Blades -- Analysis of Acoustic Emission Parameters from Corrosion of AST Bottom Plate in Field Testing -- Identification of Acoustic Emission Signal of Tank Bottom Corrosion Based on Weighted Fuzzy Clustering -- The Present Status of Using Natural Gas Cylinders and Acoustic Emission in Thailand -- Research on Acoustic Emission Attenuation Characteristics and Experiment of Composite Cylinder -- Research on the acoustic emission and metal magnetic memory characteristics of the crane box beam during the destructive testing -- The Research into the Possibilities for Monitoring Technical Conditions of Underground Pipelines Using the Acoustic Emission -- Underground Pipeline Leak Detection Using Acoustic Emission and Crest Factor Technique -- Comparison between Acoustic Emission In-service Inspection and Non-destructive Testing on Aboveground Storage Tank Floors -- Acoustic Emission Application for Unapproachable Pipeline Drain Point Leakage Detection -- Study of Pipeline Leak Detection and Location Method Based on Acoustic Emission -- Characterization of Acoustic Emission Parameters during Testing of Metal Liner Reinforced with Fully Resin Impregnated CNG Cylinder -- Applications of Acoustic Emission Testing in High Background Noise Environment -- Part V: Condition Monitoring and Diagnosis -- Acoustic Emission—an Indispensable Structural Health Monitoring Means for Aircraft -- Differentiating Signals from Different Sources of Acoustic Emission for Structural Health Monitoring Purposes -- Application of Acoustic Emission Technology for Rolling Bearing condition monitoring on Passenger Ropeway -- Wireless AE Event and Environmental Monitoring for Wind Turbine Blades at Low Sampling Rates -- Experimental Study on Acoustic Emission Detection for Low Speed Heavy Duty Crane Slewing Bearing -- Interlaminar Shear Properties and Acoustic Emission Monitoring of the Delaminated Composites for Wind Turbine Blades -- Condition Monitoring of Shaft Crack with Acoustic Emission -- Studies on Automobile Clutch Release Bearing Characteristics Parameter of Acoustic Emission -- Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology -- Part VI: Miscellaneous -- Acoustic Emission and Digital Image Correlation as Complementary Techniques for Laboratory and Field Research -- Integral Thickness Measuring -- Separation of the Elastic and Plastic Wave in Electromagnetically Induced Acoustic Emission Testing -- Correlation between Acoustic Emission and Induced Hydrogen of Shield Metal Arc Welding -- Numerical Simulation Study on Propagation Law of Acoustic Emission Signal of Slewing Ring -- Three-Dimensional Finite Element Simulation of Signal Detection Transducer for Electromagnetically Induced Acoustic Emission.…”
Format: Electronic eBookFull text (Wentworth users only)
-
158145
The Pauli Exclusion Principle : Origin, Verifications, and Applications
Wiley, 2016Table of Contents: “…. -- References -- Chapter 4 Classification of the Pauli-Allowed States in Atoms and Molecules -- 4.1 Electrons in a Central Field -- 4.1.1 Equivalent Electrons: L-S Coupling -- 4.1.2 Additional Quantum Numbers: The Seniority Number -- 4.1.3 Equivalent Electrons: j-j Coupling -- 4.2 The Connection between Molecular Terms and Nuclear Spin -- 4.2.1 Classification of Molecular Terms and the Total Nuclear Spin -- 4.2.2 The Determination of the Nuclear Statistical Weights of Spatial States -- 4.3 Determination of Electronic Molecular Multiplets -- 4.3.1 Valence Bond Method -- 4.3.2 Degenerate Orbitals and One Valence Electron on Each Atom -- 4.3.3 Several Electrons Specified on One of the Atoms -- 4.3.4 Diatomic Molecule with Identical Atoms -- 4.3.5 General Case I -- 4.3.6 General Case II -- References -- Chapter 5 Parastatistics, Fractional Statistics, and Statistics of Quasiparticles of Different Kind -- 5.1 Short Account of Parastatistics.…”
1st
Format: Electronic eBookFull text (Emerson users only)
Full text (Emmanuel users only)
Full text (NECO users only)
Full text (MCPHS users only)
Full text (Wentworth users only)
Full text (Wentworth users only)
-
158146
Managing Complexity Challenges for Industrial Engineering and Operations Management
Cham : Springer International Publishing : Imprint: Springer, 2014Table of Contents: “…. -- Toward various exact modeling the job shop scheduling problem for minimizing total weighted tardiness, by Namakshenas M., Sahraeian R. -- Set-up continuity in tactical planning of semi-continuous industrial processes, by Pérez D., Alemany M.M.E., Lario F.C., Fuertes V.S. -- Estimating costs in the EOQ formula, by Vidal-Carreras P.I., Garcia-Sabater J.P., Valero-Herrero M., Santandreu-Mascarell C..- III. …”
Format: Electronic eBookFull text (Wentworth users only)
-
158147
Computer Engineering and Networking Proceedings of the 2013 International Conference on Computer Engineering and Network (CENet2013)
Cham : Springer International Publishing : Imprint: Springer, 2014Table of Contents: “…-An Algorithm for Bayesian Networks Structure Learning Based on Simulated Annealing with Adaptive Selection Operator -- Static Image Segmentation Using Polar Space Transformation Technique -- Image Restoration Via Non-local P-Laplace Regularization -- Analysis and Application of Computer Technology on Architectural Space Lighting Visual Design -- Improving Online Gesture Recognition with WarpingLCSS by Multi-Sensor Fusion -- The Lane Mark Identifying and Tracking in Intense Illumination -- Classification Modeling of Multi-featured Remote Sensing Images Based on Sparse Representation -- A Parallel and Convergent Support Vector Machine Based on MapReduce -- Vehicle Classification Based on Hierarchical Support Vector Machine -- Image Splicing Detection Based on Machine Learning Algorithm -- A Lane Detection Algorithm Based on Hyperbola Model -- Comparisons and Analyses of Image Softproofing under Different Profile Rendering Intents -- An Improved Dense Matching Algorithm for Face Based on Region Growing -- An Improved Feature Selection Method for Chinese Short Texts Clustering Based on HowNet -- Internet Worm Detection and Classification Based on Support Vector Machine -- Real-time Fall Detection Based on Global Orientation and Human Shape -- The Classification of Synthetic Aperture Radar Oil Spill Images Based on the Texture Features and Deep Belief Network -- The Ground Objects Identification for Digital Remote Sensing Image Based on the BP Neural Network -- Detection of Image Forgery Based on Improved PCA-SIFT -- A Thinning Model for Handwriting-like Image Skeleton -- Discrimination of the White Wine Based on Sparse Principal Component Analysis and Support Vector Machine -- Volume II -- Part IV: Cloud Computing -- Design of Mobile Electronic Payment System -- Power-saving Based Radio Resource Scheduling in Long Term Evolution Advanced Network -- Dispatching and Management Model Based on Safe Performance Interface for Improving Cloud Efficiency -- A Proposed Methodology for an E-health Monitoring System Based on a Fault-tolerant Smart Mobile -- Design And Application of Indoor Geographical Information System -- Constructing Cloud Computing Infrastructure Platform of the Digital Library Base on Virtualization Technology -- A New Single Sign-on Solution in Cloud -- A Collaborative Load Control Scheme for Hierachical Mobile IPv6 Network -- A High-efficient Selective Content Encryption Method Suitable for Satellite Communication System -- Network Design of a Low-power Parking Guidance System -- Strategy of Domain and Cross-domain Access Control Based on Trust in Cloud Computing Environment -- Detecting Unhealthy Cloud System Status -- Scoring System of Simulation Training Platform Based on Expert System -- Analysis of Distributed File Systems on Virtualized Cloud Computing Environment -- A Decision Support System with Dynamic Probability Adjustment for Fault Diagnosis in Critical Systems -- Design and Implementation of an SD Interface to Multiple-target Interface Bridge -- Cloud Storage Management Technology for Small File Based on Two-Dimensional Packing Algorithm -- Advertising Media Selection and Delivery Decision-making Using Influence Diagram -- The Application of Trusted Computing Technology in the Cloud Security -- The Application Level of E-commerce in Enterprises in China -- Toward a Trinity Model of Digital Education Resources Construction and Management -- Geographic Information System in the Cloud Computing Environment -- Part V: Embedded Systems -- Memory Controller Design Based on Quadruple Modular Redundant Architecture -- Computer Power Management System Based On the Face Detection -- Twist Rotation Deformation of Titanium Sheet Metal in Laser Curve Bending Based on Finite Element Analysis -- Voltage Transient Stability Analysis by Changing the Control Modes of the Wind Generator -- The Generator Stator Fault Analysis Based on the Multi-loop Theory -- An Improved Edge Flag Algorithm Suitable for Hardware Implementation -- A Handheld Controller with Embedded Real-time Video Transmission Based on TCP/IP Protocol.…”
Format: Electronic eBookFull text (Wentworth users only)
-
158148
The little SAS book : a primer : a programming approach
Cary, NC : SAS Institute, 2012Table of Contents: “…Machine generated contents note: ch. 1 Getting Started Using SAS Software -- 1.1.The SAS Language -- 1.2.SAS Data Sets -- 1.3.DATA and PROC Steps -- 1.4.The DATA Step's Built-in Loop -- 1.5.Choosing a Mode for Submitting SAS Programs -- 1.6.Windows and Commands in the SAS Windowing Environment -- 1.7.Submitting a Program in the SAS Windowing Environment -- 1.8.Reading the SAS Log -- 1.9.Viewing Your Results -- 1.10.SAS Data Libraries -- 1.11.Viewing Data Sets in the Viewtable Window -- 1.12.Viewing the Properties of Data Sets with SAS Explorer -- 1.13.Using SAS System Options -- ch. 2 Getting Your Data into SAS -- 2.1.Methods for Getting Your Data into SAS -- 2.2.Entering Data with the Viewtable Window -- 2.3.Reading Files with the Import Wizard -- 2.4.Telling SAS Where to Find Your Raw Data -- 2.5.Reading Raw Data Separated by Spaces -- 2.6.Reading Raw Data Arranged in Columns -- 2.7.Reading Raw Data Not in Standard Format -- 2.8.Selected Informats -- 2.9.Mixing Input Styles -- 2.10.Reading Messy Raw Data -- 2.11.Reading Multiple Lines of Raw Data per Observation -- 2.12.Reading Multiple Observations per Line of Raw Data -- 2.13.Reading Part of a Raw Data File -- 2.14.Controlling Input with Options in the INFILE Statement -- 2.15.Reading Delimited Files with the DATA Step -- 2.16.Reading Delimited Files with the IMPORT Procedure -- 2.17.Reading Excel Files with the IMPORT Procedure -- 2.18.Temporary versus Permanent SAS Data Sets -- 2.19.Using Permanent SAS Data Sets with LIBNAME Statements -- 2.20.Using Permanent SAS Data Sets by Direct Referencing -- 2.21.Listing the Contents of a SAS Data Set -- ch. 3 Working with Your Data -- 3.1.Creating and Redefining Variables -- 3.2.Using SAS Functions -- 3.3.Selected SAS Character Functions -- 3.4.Selected SAS Numeric Functions -- 3.5.Using IF-THEN Statements -- 3.6.Grouping Observations with IF-THEN/ELSE Statements -- 3.7.Subsetting Your Data -- 3.8.Working with SAS Dates -- 3.9.Selected Date Informats, Functions, and Formats -- 3.10.Using the RETAIN and Sum Statements -- 3.11.Simplifying Programs with Arrays -- 3.12.Using Shortcuts for Lists of Variable Names -- ch. 4 Sorting, Printing, and Summarizing Your Data -- 4.1.Using SAS Procedures -- 4.2.Subsetting in Procedures with the WHERE Statement -- 4.3.Sorting Your Data with PROC SORT -- 4.4.Changing the Sort Order for Character Data -- 4.5.Printing Your Data with PROC PRINT -- 4.6.Changing the Appearance of Printed Values with Formats -- 4.7.Selected Standard Formats -- 4.8.Creating Your Own Formats Using PROC FORMAT -- 4.9.Writing Simple Custom Reports -- 4.10.Summarizing Your Data Using PROC MEANS -- 4.11.Writing Summary Statistics to a SAS Data Set -- 4.12.Counting Your Data with PROC FREQ -- 4.13.Producing Tabular Reports with PROC TABULATE -- 4.14.Adding Statistics to PROC TABULATE Output -- 4.15.Enhancing the Appearance of PROC TABULATE Output -- 4.16.Changing Headers in PROC TABULATE Output -- 4.17.Specifying Multiple Formats for Data Cells in PROC TABULATE Output -- 4.18.Producing Simple Output with PROC REPORT -- 4.19.Using DEFINE Statements in PROC REPORT -- 4.20.Creating Summary Reports with PROC REPORT -- 4.21.Adding Summary Breaks to PROC REPORT Output -- 4.22.Adding Statistics to PROC REPORT Output -- 4.23.Adding Computed Variables to PROC REPORT Output -- 4.24.Grouping Data in Procedures with User-Defined Formats -- ch. 5 Enhancing Your Output with ODS -- 5.1.Concepts of the Output Delivery System -- 5.2.Tracing and Selecting Procedure Output -- 5.3.Creating SAS Data Sets from Procedure Output -- 5.4.Creating Text Output -- 5.5.Creating HTML Output -- 5.6.Creating RTF Output -- 5.7.Creating PDF Output -- 5.8.Customizing Titles and Footnotes -- 5.9.Customizing PROC PRINT with the STYLE= Option -- 5.10.Customizing PROC REPORT with the STYLE= Option -- 5.11.Customizing PROC TABULATE with the STYLE= Option -- 5.12.Adding Traffic-Lighting to Your Output -- 5.13.Selected Style Attributes -- ch. 6 Modifying and Combining SAS Data Sets -- 6.1.Modifying a Data Set Using the SET Statement -- 6.2.Stacking Data Sets Using the SET Statement -- 6.3.Interleaving Data Sets Using the SET Statement -- 6.4.Combining Data Sets Using a One-to-One Match Merge -- 6.5.Combining Data Sets Using a One-to-Many Match Merge -- 6.6.Merging Summary Statistics with the Original Data -- 6.7.Combining a Grand Total with the Original Data -- 6.8.Updating a Master Data Set with Transactions -- 6.9.Writing Multiple Data Sets Using the OUTPUT Statement -- 6.10.Making Several Observations from One Using the OUTPUT Statement -- 6.11.Using SAS Data Set Options -- 6.12.Tracking and Selecting Observations with the IN= Option -- 6.13.Selecting Observations with the WHERE= Option -- 6.14.Changing Observations to Variables Using PROC TRANSPOSE -- 6.15.Using SAS Automatic Variables -- ch. 7 Writing Flexible Code with the SAS Macro Facility -- 7.1.Macro Concepts -- 7.2.Substituting Text with Macro Variables -- 7.3.Concatenating Macro Variables with Other Text -- 7.4.Creating Modular Code with Macros -- 7.5.Adding Parameters to Macros -- 7.6.Writing Macros with Conditional Logic -- 7.7.Writing Data-Driven Programs with CALL SYMPUT -- 7.8.Debugging Macro Errors -- ch. 8 Visualizing Your Data -- 8.1.Concepts of ODS Graphics -- 8.2.Creating Bar Charts -- 8.3.Creating Histograms and Density Curves -- 8.4.Creating Box Plots -- 8.5.Creating Scatter Plots -- 8.6.Creating Series Plots -- 8.7.Creating Fitted Curves -- 8.8.Controlling Axes and Reference Lines -- 8.9.Controlling Legends and Insets -- 8.10.Customizing Graph Attributes -- 8.11.Creating Paneled Graphs -- 8.12.Specifying Image Properties and Saving Graphics Output -- ch. 9 Using Basic Statistical Procedures -- 9.1.Examining the Distribution of Data with PROC UNIVARIATE -- 9.2.Creating Statistical Graphics with PROC UNIVARIATE -- 9.3.Producing Statistics with PROC MEANS -- 9.4.Testing Means with PROC TTEST -- 9.5.Creating Statistical Graphics with PROC TTEST -- 9.6.Testing Categorical Data with PROC FREQ -- 9.7.Creating Statistical Graphics with PROC FREQ -- 9.8.Examining Correlations with PROC CORR -- 9.9.Creating Statistical Graphics with PROC CORR -- 9.10.Using PROC REG for Simple Regression Analysis -- 9.11.Creating Statistical Graphics with PROC REG -- 9.12.Using PROC ANOVA for One-Way Analysis of Variance -- 9.13.Reading the Output of PROC ANOVA -- ch. 10 Exporting Your Data -- 10.1.Methods for Exporting Your Data -- 10.2.Writing Files Using the Export Wizard -- 10.3.Writing Delimited Files with the EXPORT Procedure -- 10.4.Writing Microsoft Excel Files with the EXPORT Procedure -- 10.5.Writing Raw Data Files with the DATA Step -- 10.6.Writing Delimited and HTML Files Using ODS -- ch. 11 Debugging Your SAS Programs -- 11.1.Writing SAS Programs That Work -- 11.2.Fixing Programs That Don't Work -- 11.3.Searching for the Missing Semicolon -- 11.4.Note: INPUT Statement Reached Past the End of a Line -- 11.5.Note: Lost Card -- 11.6.Note: Invalid Data -- 11.7.Note: Missing Values Were Generated -- 11.8.Note: Numeric Values Have Been Converted to Character (or Vice Versa) -- 11.9.DATA Step Produces Wrong Results but No Error Message -- 11.10.Error: Invalid Option, Error: The Option Is Not Recognized, or Error: Statement Is Not Valid -- 11.11.Note: Variable Is Uninitialized or Error: Variable Not Found -- 11.12.SAS Truncates a Character Variable -- 11.13.SAS Stops in the Middle of a Program -- 11.14.SAS Runs Out of Memory or Disk Space.…”
5th ed.
Format: Book
//IF NOT LOGGED IN - FORCE LOGIN ?>
//ELSE THEY ARE LOGGED IN PROCEED WITH THE OPEN URL CODE:?> -
158149
Enterprise Interoperability : Smart Services and Business Impact of Enterprise Interoperability
Wiley-ISTE, 2018Table of Contents: “…The ProaSense Platform for Predictive Maintenance in the Automotive Lighting Equipment Industry, Alexandros Bousdekis, Babis Magoutas, Dimitris Apostolou, Gregoris Mentzas and Primoz Puhar; 31. …”
1st edition.
Format: Electronic eBookFull text (Wentworth users only)
-
158150
5G technology : 3GPP evolution to 5G-advanced
Hoboken, NJ : John Wiley & Sons, Inc., 2024Table of Contents: “…ebire, Weide Wu, and Weidong Yang -- 13.1 Introduction 399 -- 13.2 High Data Rate, System Flexibility, and Computational Complexity 401 -- 13.3 Low Latency, Flexible Timing, and Modem Control Flow Complexity 406 -- 13.4 Multi-RAT Coexistence and Modem Architecture 413 -- 13.5 Wider Bandwidth Operation and Modem Power Consumption 419 -- 13.6 Summary 428 -- 14 Internet of Things Optimization 431 Harri Holma, Rapeepat Ratasuk, and Mads Lauridsen -- 14.1 Introduction 431 -- 14.2 IoT Optimization in LTE Radio 433 -- 14.3 Lte-m 436 -- 14.4 Narrowband-IoT 439 -- 14.5 IoT Optimization in LTE Core Network 442 -- 14.6 Coverage 443 -- 14.7 Delay and Capacity 444 -- 14.8 Power Saving Features 446 -- 14.9 NB-IoT Power Consumption Measurements 448 -- 14.10 IoT Solution Benchmarking 449 -- 14.11 IoT Optimizations in 5G 451 -- 14.12 Summary 458 -- 15 LTE-Advanced Evolution 461 Harri Holma and Timo Lunttila -- 15.1 Introduction 461 -- 15.2 Overview of LTE Evolution 462 -- 15.3 LTE-Advanced Pro Technologies 465 -- 15.4 5G and LTE Benchmarking 478 -- 15.5 Summary 482 -- 16 5G-Advanced Overview 485 Antti Toskala and Harri Holma -- 16.1 Introduction 485 -- 16.2 3GPP Schedule 486 -- 16.3 5G-Advanced Key Areas 486 -- 16.4 Extended and Augmented Reality 488 -- 16.5 Superaccurate Positioning 490 -- 16.6 Radio Performance Boosters 491 -- 16.7 New Vertical Use Cases 493 -- 16.8 Resilient Timing 494 -- 16.9 Network Automation and Energy Efficiency 495 -- 16.10 RedCap/NR-Light for IoT 495 -- 16.11 Outlook For 5G Release 19 496 -- 16.12 Outlook For 6G 497 -- 16.13 Summary 502 -- 17 Radio Enhancements in Release 16-18 505 Harri Holma and Antti Toskala -- 17.1 Introduction 505 -- 17.2 Coverage Enhancements 505 -- 17.3 MIMO Enhancements 508 -- 17.4 Mobility 510 -- 17.5 UE Power Saving 511 -- 17.6 AI/ML for Air Interface and NG-RAN 513 -- 17.7 Integrated Access and Backhaul 515 -- 17.8 Dual Connectivity and Carrier Aggregation Enhancements 517 -- 17.9 Small Data Transmission 518 -- 17.10 Conclusion 519 -- 18 Industrial Internet of Things 521 Harri Holma and Antti Toskala -- 18.1 Introduction 521 -- 18.2 Reduced Capability (RedCap) Devices 522 -- 18.3 RedCap Device Complexity 523 -- 18.4 RedCap Device Power Consumption 525 -- 18.5 RedCap Benchmarking with LTE-Based IoT 526 -- 18.6 New Spectrum Options 527 -- 18.7 Ultra-reliable Low Latency Communication 528 -- 18.8 Low Latency Communication 530 -- 18.9 Ultra-Reliable Communication 537 -- 18.10 Time Sensitive Network 540 -- 18.11 LAN Service 541 -- 18.12 Positioning Solutions 542 -- 18.13 Non-Public Networks 543 -- 18.14 Summary 544 -- 19 Verticals 547 Antti Toskala and Harri Holma -- 19.1 Introduction 547 -- 19.2 Non-Terrestrial Networks (NTN) 547 -- 19.3 High Altitude Platform Stations (HAPS) 550 -- 19.4 Drones 551 -- 19.5 Vehicle Connectivity 552 -- 19.6 Public Safety 553 -- 19.7 Dedicated Networks with less than 5 MHz of Spectrum 554 -- 19.8 Unlicensed 555 -- 19.9 Summary 556 -- 20 Open RAN and Virtualized RAN 559 Harri Holma and Antti Toskala -- 20.1 Introduction 559 -- 20.2 Radio Network Architecture Trends 560 -- 20.3 Open RAN Fronthaul 561 -- 20.4 Uplink Capacity Optimization 565 -- 20.5 O-RAN Alliance 566 -- 20.6 O-RAN Fronthaul 566 -- 20.7 Open Test and Integration Center and PlugFests 568 -- 20.8 O-RAN Security and Orchestration 569 -- 20.9 Baseband Virtualization and Cloud Ran 569 -- 20.10 Baseband Virtualization and Centralization 570 -- 20.11 Far Edge Availability and Network Topology 571 -- 20.12 Fiber and Optics Availability 573 -- 20.13 Baseband Hardware Efficiency 574 -- 20.14 Virtual RAN Evolution 575 -- 20.15 RAN Intelligent Controller 575 -- 20.16 Summary 577 -- 21 Machine Learning for 5G System Optimization 579 Riku Luostari, Petteri Kela, Mikko Honkala, Dani Korpi, Janne Huttunen, and Harri Holma -- 21.1 Introduction 580 -- 21.2 Motivation 580 -- 21.3 Model Training and Inference in Wireless Systems 581 -- 21.4 Machine Learning Categories 582 -- 21.5 Key Algorithm Techniques 583 -- 21.6 Machine Learning for 5G Wireless Systems 584 -- 21.7 Channel State Information (CSI) Improvement and Channel Prediction 586 -- 21.8 Deep Neural Network-Based Receivers and DeepRx 587 -- 21.9 Pilotless OFDM 590 -- 21.10 Massive MIMO, Beamforming, and DeepTx 591 -- 21.11 Beam Tracking for mmWaves 593 -- 21.12 Channel Coding 593 -- 21.13 MAC Scheduler and Radio Resource Management 594 -- 21.14 Learned Communication Protocols 601 -- 21.15 Network Planning and Optimization 602 -- 21.16 Network Operations 604 -- 21.17 Network Security 604 -- 21.18 Positioning 605 -- 21.19 Challenges 606 -- 21.20 Scalability 606 -- 21.21 Uncertainty 606 -- 21.22 Time Criticality and Computational Requirements 606 -- 21.23 Standardization and Specifications Impact 607 -- 21.24 Summary 608 -- References 609 -- Index 613.…”
Second edition.
Format: Electronic eBookFull text (Wentworth users only)
-
158151
Applied Impact Mechanics.
Newark : Wiley, 2016Table of Contents: “…Preface v <p>List of Figures xv</p> <p>List of Tables xix</p> <p>List of Symbols xxi</p> <p><b>Chapter 1: Introduction 1-18</b></p> <p>1.1 General Introduction to Engineering Mechanics 2</p> <p>1.2 General Introduction to Fracture Mechanics 3</p> <p>1.3 Impact Mechanics -- Appreciating Impact Problems in Engineering 5</p> <p>1.4 Historical Background 8</p> <p>1.5 Percussion, Concussion, Collision and Explosion 10</p> <p>1.6 Summary 11</p> <p>Bibliography 12</p> <p><b>Chapter 2: Rigid Body Impact Mechanics 19-34</b></p> <p>2.1 Introduction 19</p> <p>2.2 Impulse -- Momentum Equations 21</p> <p>2.3 Coefficient of Restitution -- Classical Definitions 21</p> <p>2.3.1 Kinematic Coefficient of Restitution 22</p> <p>2.3.2 Measurement of Coefficient of Restitution 22</p> <p>2.3.3 Relative Assessment of Various Impacts in Sports 23</p> <p>2.4 Coefficient of Restitution -- Alternate Definition 24</p> <p>2.4.1 Kinetic Coefficient of Restitution 24</p> <p>2.4.1.1 Case Study: Rebound of Colliding Vehicles 25</p> <p>2.4.2 Energy Coefficient of Restitution 27</p> <p>2.4.2.1 Application in Vehicle Collisions 28</p> <p>2.5 Oblique Impact -- Role of Friction 29</p> <p>2.6 Limitations of Rigid Body Impact Mechanics 31</p> <p>2.7 Summary 31</p> <p>Exercise Problems 32</p> <p>Bibliography 34</p> <p><b>Chapter 3: One-Dimensional Impact Mechanics of Deformable Bodies 35-54</b></p> <p>3.1 Introduction 35</p> <p>3.2 Single Degree of Freedom Idealization of Impact Process 36</p> <p>3.2.1 Governing Equations of Single Degree of Freedom (SDOF) System 37</p> <p>3.2.2 Forced Vibrations due to Exponentially Decaying Loads 38</p> <p>3.3 1-D Wave Propagation in Solids Induced by Impact 41</p> <p>3.3.1 Longitudinal Waves in Thin Rods 42</p> <p>3.3.1.1 The Governing Equation for Waves in Long Rods 42</p> <p>3.3.1.2 Free Vibrations in a Finite Rod 46</p> <p>3.3.2 Flexural Waves in Thin Rods 47</p> <p>3.3.2.1 The Governing Equation for Flexural Waves in Rods 47</p> <p>3.3.2.2 Free Vibrations of Finite Beams 48</p> <p>3.3.3 The D'Alembert's Solution for Wave Equation 50</p> <p>3.4 Summary 51</p> <p>Exercise Problems 52</p> <p>Bibliography 54</p> <p><b>Chapter 4: Multi-Dimensional Impact Mechanics of Deformable Bodies 55-78</b></p> <p>4.1 Introduction 55</p> <p>4.2 Analysis of Stress 56</p> <p>4.2.1 Stress Components on an Arbitrary Plane 56</p> <p>4.2.2 Principal Stresses and Stress Invariants 57</p> <p>4.2.3 Mohr's Circles 58</p> <p>4.2.4 Octahedral Stresses 58</p> <p>4.2.5 Decomposition into Hydrostatic and Pure Shear States 59</p> <p>4.2.6 Equations of Motion of a Body in Cartesian Coordinates 60</p> <p>4.2.7 Equations of Motion of a Body in Cylindrical Coordinates 61</p> <p>4.2.8 Equations of Motion of a Body in Spherical Coordinates 62</p> <p>4.3 Analysis of Strain 63</p> <p>4.3.1 Deformation in the Neighborhood of a Point 63</p> <p>4.3.2 Compatibility Equations 64</p> <p>4.3.3 Strain Deviator 65</p> <p>4.4 Linearised Stress-Strain Relations 65</p> <p>4.4.1 Stress-Strain Relations for Isotropic Materials 66</p> <p>4.5 Waves in Infinite Medium 67</p> <p>4.5.1 Longitudinal Waves (Primary/Dilatational/Irrotational Waves) 67</p> <p>4.5.1.1 Longitudinal Waves 68</p> <p>4.5.1.2 The Governing Equations for Longitudinal Waves 68</p> <p>4.5.2 Transverse Waves (Secondary/Shear/Distortional/Rotational Wave) 69</p> <p>4.5.2.1 Transverse Waves 69</p> <p>4.5.2.2 The Governing Equations for Transverse Waves 70</p> <p>4.6 Waves in Semi-Infinite Media 70</p> <p>4.6.1 Surface Waves 71</p> <p>4.6.2 Symmetric Rayleigh-Lamb Spectrum in Elastic Layer 74</p> <p>4.7 Summary 76</p> <p>Exercise Problems 76</p> <p>Bibliography 78</p> <p><b>Chapter 5: Experimental Impact Mechanics 79-131</b></p> <p>5.1 Introduction 80</p> <p>5.2 Quasi-Static Material Tests 81</p> <p>5.3 Pendulum Impact Tests 87</p> <p>5.4 About High Strain Rate Testing of Materials 90</p> <p>5.5 Split Hopkinson's Pressure Bar Test 91</p> <p>5.5.1 Historical Background and Significance 91</p> <p>5.5.2 Improvements in SHPB Test Apparatus 92</p> <p>5.5.3 Principle of SHPB Test 93</p> <p>5.5.4 Theory Behind SHPB 95</p> <p>5.5.5 Design of Pressure Bars for a SHPB Apparatus 97</p> <p>5.5.6 Applications, Availability and Few Results 100</p> <p>5.6 Taylor Cylinder Impact Test 103</p> <p>5.6.1 Methodology 104</p> <p>5.6.2 Strain Rates 107</p> <p>5.6.3 Limitations and Improvements 107</p> <p>5.6.4 Case Study-1: Experiments with a Paraffin Wax 109</p> <p>5.6.5 Case Study-2: Experiments with Steel Cylinders 109</p> <p>5.7 Drop Impact Test 110</p> <p>5.7.1 Drop Specimen Test (DST) 111</p> <p>5.7.1.1 Few Standards for DST by Free Fall 113</p> <p>5.7.1.2 Experimental Setup for DST 113</p> <p>5.7.1.3 DST Procedure 115</p> <p>5.7.1.4 A Case Study: DST of a helicopter in NASA 116</p> <p>5.7.2 Drop Weight Test (DWT) 118</p> <p>5.7.2.1 Experimental Setup for DWT 119</p> <p>5.7.2.2 Case Study-1: DWT to study fracture process in structural concrete 121</p> <p>5.7.2.3 Case Study-2: DWT tower for applying both compressive and 124</p> <p>5.8 Summary 125</p> <p>Exercise Problems 126</p> <p>References 127</p> <p><b>Chapter 6: Modeling Deformation and Failure Under Impact 133-169</b></p> <p>6.1 Introduction 133</p> <p>6.2 Equation of State 135</p> <p>6.2.1 Gruneisen Parameter 135</p> <p>6.2.2 Shock-Hugoniot Curve 136</p> <p>6.2.3 Rankine-Hugoniot Conditions 137</p> <p>6.2.4 Mie-Gruneisen (Shock) Equation of State 139</p> <p>6.2.4.1 Implementation of Mie-Gruneisen Equation of State 141</p> <p>6.2.5 Murnaghan Equation of State 142</p> <p>6.2.6 Linear Equation of State 142</p> <p>6.2.7 Polynomial Equation of State 143</p> <p>6.2.8 High Explosive Equation of State 143</p> <p>6.3 Constitutive Models for Material Deformation and Plasticity 144</p> <p>6.3.1 Plasticity 145</p> <p>6.3.2 Plastic Isotropic or Kinematic Hardening Material Model 147</p> <p>6.3.3 Thermo-Elastic-Plastic Material Model 148</p> <p>6.3.4 Power-Law Isotropic Plasticity Material Model 148</p> <p>6.3.5 Johnson-Cook Material Model 149</p> <p>6.3.5.1 Determination of Parameters in Johnson-Cook Model 150</p> <p>6.3.6 Zerilli-Armstrong Material Model 151</p> <p>6.3.6.1 Modified Zerilli-Armstrong Material Model 151</p> <p>6.3.6.2 Determination of Parameters in Zerilli-Armstrong Model 152</p> <p>6.3.7 Combined Johnson-Cook and Zerilli-Armstrong Material Model 152</p> <p>6.3.8 Steinberg-Guinan Material Model 153</p> <p>6.3.9 Barlat's 3 Parameter Plasticity Material Model 153</p> <p>6.3.10 Orthotropic Material Model 154</p> <p>6.3.11 Summary of Material Models 154</p> <p>6.4 Failure/Damage Models 155</p> <p>6.4.1 Void Growth and Fracture Strain Model 156</p> <p>6.4.1.1 Void Growth Model 156</p> <p>6.4.1.2 Fracture Strain Model 157</p> <p>6.4.2 Johnson-Cook Failure Model 158</p> <p>6.4.3 Unified Model of Visco-plasticity and Ductile Damage 159</p> <p>6.4.4 Johnson-Holmquist Concrete Damage Model 160</p> <p>6.4.4.1 Determination of Parameters in Johnson-Holmquist Model 161</p> <p>6.4.5 Chang-Chang Composite Damage Model 161</p> <p>6.4.6 Orthotropic Damage Model 162</p> <p>6.4.7 Plastic Strain Limit Damage Model 162</p> <p>6.4.8 Material Stress/Strain Limit Damage Model 162</p> <p>6.4.9 Implementation of Damage 163</p> <p>6.4.9.1 Discrete Technique 163</p> <p>6.4.9.2 Operator Split Technique 163</p> <p>6.5 Temperature Rise During Impact 164</p> <p>6.6 Summary 165</p> <p>Exercise Problems 166</p> <p>References 167</p> <p><b>Chapter 7: Computational Impact Mechanics 171-219</b></p> <p>7.1 Introduction 171</p> <p>7.2 Principles of Numerical Formulations 174</p> <p>7.2.1 Classical Continuum Methods: Lagrangean, Eulerian and 174</p> <p>7.2.1.1 Lagrangean Formulation 174</p> <p>7.2.1.2 Eulerian Formulation 176</p> <p>7.2.1.3 Arbitrary Lagrangean- Eulerian Coupling (ALE-Formulation) 177</p> <p>7.2.2 Particle Based Methods 179</p> <p>7.2.2.1 Smooth Particle Hydrodynamics Method 180</p> <p>7.2.2.2 Discrete Element Method 183</p> <p>7.2.3 Meshless Methods 185</p> & l.…”
Format: Electronic eBookFull text (Emerson users only)
Full text (Emmanuel users only)
Full text (NECO users only)
Full text (MCPHS users only)
Access E-Book
Full text (Wentworth users only)
-
158152
Machine learning theory and applications : hands-on use cases with Python on classical and quantum machines
Hoboken, New Jersey : Wiley, 2024Table of Contents: “…Foreword xiii -- Acknowledgments xv -- General Introduction xvii -- 1 Concepts, Libraries, and Essential Tools in Machine Learning and Deep Learning 1 -- 1.1 Learning Styles for Machine Learning 2 -- 1.1.1 Supervised Learning 2 -- 1.1.1.1 Overfitting and Underfitting 3 -- 1.1.1.2 K-Folds Cross-Validation 4 -- 1.1.1.3 Train/Test Split 4 -- 1.1.1.4 Confusion Matrix 5 -- 1.1.1.5 Loss Functions 7 -- 1.1.2 Unsupervised Learning 9 -- 1.1.3 Semi-Supervised Learning 9 -- 1.1.4 Reinforcement Learning 9 -- 1.2 Essential Python Tools for Machine Learning 9 -- 1.2.1 Data Manipulation with Python 10 -- 1.2.2 Python Machine Learning Libraries 10 -- 1.2.2.1 Scikit-learn 10 -- 1.2.2.2 TensorFlow 10 -- 1.2.2.3 Keras 12 -- 1.2.2.4 PyTorch 12 -- 1.2.3 Jupyter Notebook and JupyterLab 13 -- 1.3 HephAIstos for Running Machine Learning on CPUs, GPUs, and QPUs 13 -- 1.3.1 Installation 13 -- 1.3.2 HephAIstos Function 15 -- 1.4 Where to Find the Datasets and Code Examples 32 -- Further Reading 33 -- 2 Feature Engineering Techniques in Machine Learning 35 -- 2.1 Feature Rescaling: Structured Continuous Numeric Data 36 -- 2.1.1 Data Transformation 37 -- 2.1.1.1 StandardScaler 37 -- 2.1.1.2 MinMaxScaler 39 -- 2.1.1.3 MaxAbsScaler 40 -- 2.1.1.4 RobustScaler 40 -- 2.1.1.5 Normalizer: Unit Vector Normalization 42 -- 2.1.1.6 Other Options 43 -- 2.1.1.7 Transformation to Improve Normal Distribution 44 -- 2.1.1.8 Quantile Transformation 48 -- 2.1.2 Example: Rescaling Applied to an SVM Model 50 -- 2.2 Strategies to Work with Categorical (Discrete) Data 57 -- 2.2.1 Ordinal Encoding 59 -- 2.2.2 One-Hot Encoding 61 -- 2.2.3 Label Encoding 62 -- 2.2.4 Helmert Encoding 63 -- 2.2.5 Binary Encoding 64 -- 2.2.6 Frequency Encoding 65 -- 2.2.7 Mean Encoding 66 -- 2.2.8 Sum Encoding 68 -- 2.2.9 Weight of Evidence Encoding 68 -- 2.2.10 Probability Ratio Encoding 70 -- 2.2.11 Hashing Encoding 71 -- 2.2.12 Backward Difference Encoding 72 -- 2.2.13 Leave-One-Out Encoding 73 -- 2.2.14 James-Stein Encoding 74 -- 2.2.15 M-Estimator Encoding 76 -- 2.2.16 Using HephAIstos to Encode Categorical Data 77 -- 2.3 Time-Related Features Engineering 77 -- 2.3.1 Date-Related Features 79 -- 2.3.2 Lag Variables 79 -- 2.3.3 Rolling Window Feature 82 -- 2.3.4 Expending Window Feature 84 -- 2.3.5 Understanding Time Series Data in Context 85 -- 2.4 Handling Missing Values in Machine Learning 88 -- 2.4.1 Row or Column Removal 89 -- 2.4.2 Statistical Imputation: Mean, Median, and Mode 90 -- 2.4.3 Linear Interpolation 91 -- 2.4.4 Multivariate Imputation by Chained Equation Imputation 92 -- 2.4.5 KNN Imputation 93 -- 2.5 Feature Extraction and Selection 97 -- 2.5.1 Feature Extraction 97 -- 2.5.1.1 Principal Component Analysis 98 -- 2.5.1.2 Independent Component Analysis 102 -- 2.5.1.3 Linear Discriminant Analysis 110 -- 2.5.1.4 Locally Linear Embedding 115 -- 2.5.1.5 The t-Distributed Stochastic Neighbor Embedding Technique 123 -- 2.5.1.6 More Manifold Learning Techniques 125 -- 2.5.1.7 Feature Extraction with HephAIstos 130 -- 2.5.2 Feature Selection 131 -- 2.5.2.1 Filter Methods 132 -- 2.5.2.2 Wrapper Methods 146 -- 2.5.2.3 Embedded Methods 154 -- 2.5.2.4 Feature Importance Using Graphics Processing Units (GPUs) 167 -- 2.5.2.5 Feature Selection Using HephAIstos 168 -- Further Reading 170 -- 3 Machine Learning Algorithms 175 -- 3.1 Linear Regression 176 -- 3.1.1 The Math 176 -- 3.1.2 Gradient Descent to Optimize the Cost Function 177 -- 3.1.3 Implementation of Linear Regression 182 -- 3.1.3.1 Univariate Linear Regression 182 -- 3.1.3.2 Multiple Linear Regression: Predicting Water Temperature 185 -- 3.2 Logistic Regression 202 -- 3.2.1 Binary Logistic Regression 202 -- 3.2.1.1 Cost Function 203 -- 3.2.1.2 Gradient Descent 204 -- 3.2.2 Multinomial Logistic Regression 204 -- 3.2.3 Multinomial Logistic Regression Applied to Fashion MNIST 204 -- 3.2.3.1 Logistic Regression with scikit-learn 205 -- 3.2.3.2 Logistic Regression with Keras on TensorFlow 208 -- 3.2.4 Binary Logistic Regression with Keras on TensorFlow 210 -- 3.3 Support Vector Machine 211 -- 3.3.1 Linearly Separable Data 212 -- 3.3.2 Not Fully Linearly Separable Data 214 -- 3.3.3 Nonlinear SVMs 216 -- 3.3.4 SVMs for Regression 217 -- 3.3.5 Application of SVMs 219 -- 3.3.5.1 SVM Using scikit-learn for Classification 220 -- 3.3.5.2 SVM Using scikit-learn for Regression 222 -- 3.4 Artificial Neural Networks 223 -- 3.4.1 Multilayer Perceptron 224 -- 3.4.2 Estimation of the Parameters 225 -- 3.4.2.1 Loss Functions 225 -- 3.4.2.2 Backpropagation: Binary Classification 226 -- 3.4.2.3 Backpropagation: Multi-class Classification 227 -- 3.4.3 Convolutional Neural Networks 230 -- 3.4.4 Recurrent Neural Network 232 -- 3.4.5 Application of MLP Neural Networks 233 -- 3.4.6 Application of RNNs: LST Memory 242 -- 3.4.7 Building a CNN 246 -- 3.5 Many More Algorithms to Explore 249 -- 3.6 Unsupervised Machine Learning Algorithms 251 -- 3.6.1 Clustering 251 -- 3.6.1.1 K-means 253 -- 3.6.1.2 Mini-batch K-means 255 -- 3.6.1.3 Mean Shift 257 -- 3.6.1.4 Affinity Propagation 259 -- 3.6.1.5 Density-based Spatial Clustering of Applications with Noise 262 -- 3.7 Machine Learning Algorithms with HephAIstos 264 -- References 270 -- Further Reading 270 -- 4 Natural Language Processing 273 -- 4.1 Classifying Messages as Spam or Ham 274 -- 4.2 Sentiment Analysis 281 -- 4.3 Bidirectional Encoder Representations from Transformers 286 -- 4.4 BERT's Functionality 287 -- 4.5 Installing and Training BERT for Binary Text Classification Using TensorFlow 288 -- 4.6 Utilizing BERT for Text Summarization 294 -- 4.7 Utilizing BERT for Question Answering 296 -- Further Reading 297 -- 5 Machine Learning Algorithms in Quantum Computing 299 -- 5.1 Quantum Machine Learning 303 -- 5.2 Quantum Kernel Machine Learning 306 -- 5.3 Quantum Kernel Training 328 -- 5.4 Pegasos QSVC: Binary Classification 333 -- 5.5 Quantum Neural Networks 337 -- 5.5.1 Binary Classification with EstimatorQNN 338 -- 5.5.2 Classification with a SamplerQNN 343 -- 5.5.3 Classification with Variational Quantum Classifier 348 -- 5.5.4 Regression 351 -- 5.6 Quantum Generative Adversarial Network 352 -- 5.7 Quantum Algorithms with HephAIstos 368 -- References 372 -- Further Reading 373 -- 6 Machine Learning in Production 375 -- 6.1 Why Use Docker Containers for Machine Learning? …”
Format: Electronic eBookFull text (Wentworth users only)
-
158153
Remote Sensing Digital Image Analysis : an Introduction
Berlin, Heidelberg : Springer Berlin Heidelberg, 1993Table of Contents: “…More Advanced Considerations -- 8.8 Context Classification -- 8.8.1 The Concept of Spatial Context -- 8.8.2 Context Classification by Image Pre-Processing -- 8.8.3 Post Classification Filtering -- 8.8.4 Probabilistic Label Relaxation -- 8.8.4.1 The Basic Algorithm -- 8.8.4.2 The Neighbourhood Function -- 8.8.4.3 Determining the Compatibility Coefficients -- 8.8.4.4 The Final Step -- Stopping the Process -- 8.8.4.5 Examples -- 8.9 Classification of Mixed Image Data -- 8.9.1 The Stacked Vector Approach -- 8.9.2 Statistical Methods -- 8.9.3 The Theory of Evidence -- 8.9.3.1 The Concept of Evidential Mass -- 8.9.3.2 Combining Evidence -- the Orthogonal Sum -- 8.9.3.3 Decision Rule -- 8.10 Classification Using Neural Networks -- 8.10.1 Linear Discrimination -- 8.10.1.1 Concept of a Weight Vector -- 8.10.1.2 Testing Class Membership -- 8.10.1.3 Training -- 8.10.1.4 Setting the Correction Increment -- 8.10.1.5 Classification -- The Threshold Logic Unit -- 8.10.1.6 Multicategory Classification -- 8.10.2 Networks of Classifiers -- Solutions of Nonlinear Problems -- 8.10.3 The Neural Network Approach -- 8.10.3.1 The Processing Element -- 8.10.3.2 Training the Neural Network -- Backpropagation -- 8.10.3.3 Choosing the Network Parameters -- 8.10.3.4 Examples -- References for Chapter 8 -- Problems -- 9 -- Clustering and Unsupervised Classification -- 9.1 Delineation of Spectral Classes -- 9.2 Similarity Metrics and Clustering Criteria -- 9.3 The Iterative Optimization (Migrating Means) Clustering Algorithm -- 9.3.1 The Basic.…”
Second, rev. and enlarged edition.
Format: Electronic eBookFull text (Emerson users only)
Full text (Emmanuel users only)
Full text (NECO users only)
Full text (MCPHS users only)
Full text (Wentworth users only)
-
158154
Principles and Practice of Hospital Medicine
New York, N.Y. : McGraw-Hill Education LLC., 2017Table of Contents: “…Chapter 118: Neurologic Imaging -- Chapter 119: Interventional Radiology -- Section 3: Procedures -- Chapter 120: Vascular Access -- Chapter 121: Intubation and Airway Support -- Chapter 122: Arterial Blood Gas and Placement of A-line -- Chapter 123: Feeding Tube Placement -- Chapter 124: Thoracentesis -- Chapter 125: Lumbar Puncture -- Chapter 126: Paracentesis -- Chapter 127: Arthrocentesis -- PART VI: CLINICAL CONDITIONS IN THE INPATIENT SETTING -- Section 1: Cardiovascular Medicine -- Chapter 128: Acute Coronary Syndromes -- Chapter 129: Heart Failure -- Chapter 130: Myocarditis, Pericardial Disease, and Cardiac Tamponade -- Chapter 131: Valvular Heart Disease -- Chapter 132: Supraventricular Tachyarrhythmias -- Chapter 133: Bradycardia -- Chapter 134: Ventricular Arrhythmias -- Chapter 135: Cardioversion -- Chapter 136: Pacemakers, Defibrillators, and Cardiac Resynchronization Devices in Hospital Medicine -- Section 2: Critical Care -- Chapter 137: Inpatient Cardiac Arrest and Cardiopulmonary Resuscitation -- Chapter 138: Acute Respiratory Failure -- Chapter 139: Pain, Agitation, and Delirium in the Critical Care Setting -- Chapter 140: Mechanical Ventilation -- Chapter 141: Sepsis and Shock -- Chapter 142: Acute Respiratory Distress Syndrome -- Chapter 143: Prevention in the Intensive Care Unit Setting -- Section 3: Dermatology -- Chapter 144: Flushing and Urticaria -- Chapter 145: Adverse Cutaneous Drug Reactions -- Chapter 146: Psoriasis and Other Papulosquamous Disorders -- Chapter 147: Diabetic Foot Infections -- Chapter 148: Venous Ulcers -- Chapter 149: Dermatologic Findings in Systemic Disease -- Section 4: Endocrinology -- Chapter 150: Glycemic Emergencies -- Chapter 151: Inpatient Management of Diabetes and Hyperglycemia -- Chapter 152: Thyroid Emergencies -- Chapter 153: Adrenal Insufficiency -- Chapter 154: Pituitary Disease -- Section 5: Gastroenterology -- Chapter 155: GERD and Esophagitis -- Chapter 156: Upper Gastrointestinal Bleeding -- Chapter 157: Acute Pancreatitis -- Chapter 158: Jaundice, Obstruction, and Acute Cholangitis -- Chapter 159: Acute Liver Disease -- Chapter 160: Cirrhosis and Its Complications -- Chapter 161: Acute Lower Gastrointestinal Bleeding -- Chapter 162: Small Bowel Disorders -- Chapter 163: Large Bowel Disorders -- Chapter 164: Inflammatory Bowel Disease -- Section 6: Geriatrics -- Chapter 165: Principles of Geriatric Care -- Chapter 166: Agitation in Older Adults -- Chapter 167: Elder Mistreatment -- Chapter 168: Malnutrition and Weight Loss in Hospitalized Older Adults -- Section 7: Hematology -- Chapter 169: Abnormalities in Red Blood Cells -- Chapter 170: Disorders of the White Cell -- Chapter 171: Quantitative Abnormalities of Platelets: Thrombocytopenia and Thrombocytosis -- Chapter 172: Approach to Patients with Bleeding Disorders -- Chapter 173: Hypercoagulable States -- Chapter 174: Hematologic Malignancies -- Section 8: Oncology -- Chapter 175: Overview of Cancer and Treatment -- Chapter 176: Oncologic Emergencies -- Chapter 177: Approach to the Patient with Suspected Malignancy -- Chapter 178: Breast, Ovary, and Cervical Cancer -- Chapter 179: Menђ́ةs Cancers -- Chapter 180: Cancers of the Kidney, Renal Pelvis, and Ureter -- Chapter 181: Oncologic Issues of the Aerodigestive Tract -- Chapter 182: Gastrointestinal Cancers -- Chapter 183: Immune-Related Adverse Events (irAEs) in Cancer Patients -- Section 9: Infectious Disease -- Chapter 184: Fundamentals of Antibiotics -- Chapter 185: Antibiotic Resistance -- Chapter 186: Community-Acquired Pneumonia.…”
2nd ed.
Format: Electronic eBookFull text (MCPHS users only)
Access E-Book
-
158155
Yamada's textbook of gastroenterology
Chichester, West Sussex ; Hoboken, NJ : John Wiley & Sons Inc., 2016Table of Contents: “…Clinical Decision Making / Jasmine K Zia, John M Inadomi -- Approach to the Patient with Dyspepsia and Related Functional Gastrointestinal Complaints / Jan F Tack -- Approach to the Patient with Dysphagia, Odynophagia, or Noncardiac Chest Pain / André JPM Smout -- Approach to the Patient with Unintentional Weight Loss / Sreedhar Subramanian, Jonathan M Rhodes -- Approach to the Patient with Nausea and Vomiting / William Lee Hasler -- Approach to the Patient with Abdominal Pain / Pankaj J Pasricha -- Approach to the Patient with Gas and Bloating / Satish SC Rao, Yeong Yeh Lee -- Approach to the Patient with Diarrhea / Gail A Hecht, Jonathan Gaspar, Miguel Malespin -- Approach to the Patient with Constipation / Satish SC Rao, Michael Camilleri -- Approach to the Patient with Acute Abdomen / Courtney B Sherman, Kenneth McQuaid -- Approach to the Patient with Gastrointestinal Bleeding / Kevin A Ghassemi, Dennis M Jensen -- Approach to the Patient with Abnormal Liver Chemistries or Jaundice / J Gregory Fitz -- Approach to Gastrointestinal and Liver Diseases in Pregnancy / Sumona Saha, Nancy Reau -- Genetic Counseling for Gastrointestinal Patients / Laura E Panos, C Richard Boland -- Gastrointestinal Diseases. …”
Sixth edition.
Format: Electronic eBookAccess E-Book
-
158156
Yamada's textbook of gastroenterology
Chichester, West Sussex ; Hoboken, NJ : John Wiley & Sons Inc., 2016Table of Contents: “…e JPM Smout -- Approach to the patient with unintentional weight loss / Sreedhar Subramanian, Jonathan M Rhodes -- Approach to the patient with nausea and vomiting / William Lee Hasler -- Approach to the patient with abdominal pain / Pankaj J Pasricha -- Approach to the patient with gas and bloating / Satish SC Rao, Yeong Yeh Lee -- Approach to the patient with diarrhea / Gail A Hecht, Jonathan Gaspar, Miguel Malespin -- Approach to the patient with constipation / Satish SC Rao, Michael Camilleri -- Approach to the patient with acute abdomen / Courtney B Sherman, Kenneth McQuaid -- Approach to the patient with gastrointestinal bleeding / Kevin A Ghassemi, Dennis M Jensen -- Approach to the patient with abnormal liver chemistries or jaundice / J Gregory Fitz -- Approach to gastrointestinal and liver diseases in pregnancy / Sumona Saha, Nancy Reau -- Genetic counseling for gastrointestinal patients / Laura E Panos, C Richard Boland -- Gastrointestinal diseases. …”
Sixth edition.
Format: Electronic eBookFull text (Wentworth users only)
-
158157
Beyond the burning lands
New York : Macmillan, 1971Format: Book
//IF NOT LOGGED IN - FORCE LOGIN ?>
//ELSE THEY ARE LOGGED IN PROCEED WITH THE OPEN URL CODE:?> -
158158
The black stallion returns
New York : Knopf, 1991
First Bullseye Books edition.Format: Book
//IF NOT LOGGED IN - FORCE LOGIN ?>
//ELSE THEY ARE LOGGED IN PROCEED WITH THE OPEN URL CODE:?> -
158159
The Nip and Tuck war
Boston : Houghton-Mifflin, 1964Format: Book
//IF NOT LOGGED IN - FORCE LOGIN ?>
//ELSE THEY ARE LOGGED IN PROCEED WITH THE OPEN URL CODE:?> -
158160
Stop, thief!
New York : Greenwillow Books, 1993
First edition.Format: Book
//IF NOT LOGGED IN - FORCE LOGIN ?>
//ELSE THEY ARE LOGGED IN PROCEED WITH THE OPEN URL CODE:?>