Showing 142,401 - 142,420 results of 161,644 for search '(("klight" OR ((((("slight" OR "fight") OR "slightly") OR "flight") OR (((("fright" OR "wright") OR ((("wrights" OR "wrights") OR "eights") OR "eights")) OR "night") OR ((("wrights" OR ("weighth" OR "weight")) OR ("rightss" OR "rightss")) OR "heights"))) OR ("fightly" OR ((("frightssly" OR ("frightsly" OR "wrightsly")) OR ("frightsssly" OR ("fightsssly" OR "lightsssly"))) OR ("rightssly" OR "rightsssly"))))) OR ("right" OR "light"))', query time: 2.01s Refine Results
  1. 142401

    Mastering Rubik's Cube

    [San Francisco, California, USA] : Kanopy Streaming, 2015
    Format: Video

    This item is not available through FLO. Please contact your home library for further assistance.
  2. 142402

    Footsteps of the Unknown.

    [San Francisco, California, USA] : Kanopy Streaming, 2016
    Format: Electronic Video
    Streaming video (Wentworth users only)
  3. 142403

    Killer Endings (A-list Screenwriting Series).

    [San Francisco, California, USA] : Kanopy Streaming, 2015
    Format: Electronic Video
    Streaming video (Wentworth users only)
  4. 142404

    Signal Processing and Machine Learning with Applications by Richter, Michael M., Paul, Sheuli, Këpuska, Veton, Silaghi, Marius

    Cham : Springer International Publishing : Imprint: Springer, 2022
    1st ed. 2022.
    Table of Contents: “…Part I Realms of Signal Processing -- 1 Digital Signal Representation -- 1.1 Introduction -- 1.2 Numbers -- 1.2.1 Numbers and Numerals -- 1.2.2 Types of Numbers -- 1.2.3 Positional Number Systems -- 1.3 Sampling and Reconstruction of Signals -- 1.3.1 Scalar Quantization -- 1.3.2 Quantization Noise -- 1.3.3 Signal-To-Noise Ratio -- 1.3.4 Transmission Rate -- 1.3.5 Nonuniform Quantizer -- 1.3.6 Companding -- 1.4 Data Representations -- 1.4.1 Fixed-Point Number Representations -- 1.4.2 Sign-Magnitude Format -- 1.4.3 One’s-Complement Format -- 1.4.4 Two’s-Complement Format -- 1.5 Fix-Point DSP’s -- 1.6 Fixed-Point Representations Based on Radix-Point -- 1.7 Dynamic Range -- 1.8 Precision -- 1.9 Background Information -- 1.10 Exercises -- 2 Signal Processing Background -- 2.1 Basic Concepts -- 2.2 Signals and Information -- 2.3 Signal Processing -- ix -- x Contents -- 2.4 Discrete Signal Representations -- 2.5 Delta and Impulse Function -- 2.6 Parseval’s Theorem -- 2.7 Gibbs Phenomenon -- 2.8 Wold Decomposition -- 2.9 State Space Signal Processing -- 2.10 Common Measurements -- 2.10.1 Convolution -- 2.10.2 Correlation -- 2.10.3 Auto Covariance -- 2.10.4 Coherence -- 2.10.5 Power Spectral Density (PSD) -- 2.10.6 Estimation and Detection -- 2.10.7 Central Limit Theorem -- 2.10.8 Signal Information Processing Types -- 2.10.9 Machine Learning -- 2.10.10Exercises -- 3 Fundamentals of Signal Transformations -- 3.1 Transformation Methods -- 3.1.1 Laplace Transform -- 3.1.2 Z-Transform -- 3.1.3 Fourier Series -- 3.1.4 Fourier Transform -- 3.1.5 Discrete Fourier Transform and Fast Fourier Transform -- 3.1.6 Zero Padding -- 3.1.7 Overlap-Add and Overlap-Save Convolution -- Algorithms -- 3.1.8 Short Time Fourier Transform (STFT) -- 3.1.9 Wavelet Transform -- 3.1.10 Windowing Signal and the DCT Transforms -- 3.2 Analysis and Comparison of Transformations -- 3.3 Background Information -- 3.4 Exercises -- 3.5 References -- 4 Digital Filters -- 4.1 Introduction -- 4.1.1 FIR and IIR Filters -- 4.1.2 Bilinear Transform -- 4.2 Windowing for Filtering -- 4.3 Allpass Filters -- 4.4 Lattice Filters -- 4.5 All-Zero Lattice Filter -- 4.6 Lattice Ladder Filters -- Contents xi -- 4.7 Comb Filter -- 4.8 Notch Filter -- 4.9 Background Information -- 4.10 Exercises -- 5 Estimation and Detection -- 5.1 Introduction -- 5.2 Hypothesis Testing -- 5.2.1 Bayesian Hypothesis Testing -- 5.2.2 MAP Hypothesis Testing -- 5.3 Maximum Likelihood (ML) Hypothesis Testing -- 5.4 Standard Analysis Techniques -- 5.4.1 Best Linear Unbiased Estimator (BLUE) -- 5.4.2 Maximum Likelihood Estimator (MLE) -- 5.4.3 Least Squares Estimator (LSE) -- 5.4.4 Linear Minimum Mean Square Error Estimator -- (LMMSE) -- 5.5 Exercises -- 6 Adaptive Signal Processing -- 6.1 Introduction -- 6.2 Parametric Signal Modeling -- 6.2.1 Parametric Estimation -- 6.3 Wiener Filtering -- 6.4 Kalman Filter -- 6.4.1 Smoothing -- 6.5 Particle Filter -- 6.6 Fundamentals of Monte Carl -- 6.6.1 Importance Sampling (IS) -- 6.7 Non-Parametric Signal Modeling -- 6.8 Non-Parametric Estimation -- 6.8.1 Correlogram -- 6.8.2 Periodogram -- 6.9 Filter Bank Method -- 6.10 Quadrature Mirror Filter Bank (QMF) -- 6.11 Background Information -- 6.12 Exercises -- 7 Spectral Analysis -- 7.1 Introduction -- 7.2 Adaptive Spectral Analysis -- 7.3 Multivariate Signal Processing -- 7.3.1 Sub-band Coding and Subspace Analysis -- 7.4 Wavelet Analysis -- 7.5 Adaptive Beam Forming -- xii Contents -- 7.6 Independent Component Analysis (ICA) -- 7.7 Principal Component Analysis (PCA) -- 7.8 Best Basis Algorithms -- 7.9 Background Information -- 7.10 Exercises -- Part II Machine Learning and Recognition -- 8 General Learning -- 8.1 Introduction to Learning -- 8.2 The Learning Phases -- 8.2.1 Search and Utility -- 8.3 Search -- 8.3.1 General Search Model -- 8.3.2 Preference relations -- 8.3.3 Different learning methods -- 8.3.4 Similarities -- 8.3.5 Learning to Recognize -- 8.3.6 Learning again -- 8.4 Background Information -- 8.5 Exercises -- 9 Signal Processes, Learning, and Recognition -- 9.1 Learning -- 9.2 Bayesian Formalism -- 9.2.1 Dynamic Bayesian Theory -- 9.2.2 Recognition and Search -- 9.2.3 Influences -- 9.3 Subjectivity -- 9.4 Background Information -- 9.5 Exercises -- 10 Stochastic Processes -- 10.1 Preliminaries on Probabilities -- 10.2 Basic Concepts of Stochastic Processes -- 10.2.1 Markov Processes -- 10.2.2 Hidden Stochastic Models (HSM) -- 10.2.3 HSM Topology -- 10.2.4 Learning Probabilities -- 10.2.5 Re-estimation -- 10.2.6 Redundancy -- 10.2.7 Data Preparation -- 10.2.8 Proper Redundancy Removal -- 10.3 Envelope Detection -- 10.3.1 Silence Threshold Selection -- 10.3.2 Pre-emphasis -- Contents xiii -- 10.4 Several Processes -- 10.4.1 Similarity -- 10.4.2 The Local-Global Principle -- 10.4.3 HSM Similarities -- 10.5 Conflict and Support -- 10.6 Examples and Applications -- 10.7 Predictions -- 10.8 Background Information -- 10.9 Exercises -- 11 Feature Extraction -- 11.1 Feature Extractions -- 11.2 Basic Techniques -- 11.2.1 Spectral Shaping -- 11.3 Spectral Analysis and Feature Transformation -- 11.3.1 Parametric Feature Transformations and Cepstrum -- 11.3.2 Standard Feature Extraction Techniques -- 11.3.3 Frame Energy -- 11.4 Linear Prediction Coe_cients (LPC) -- 11.5 Linear Prediction Cepstral Coe_cients (LPCC) -- 11.6 Adaptive Perceptual Local Trigonometric Transformation -- (APLTT) -- 11.7 Search -- 11.7.1 General Search Model -- 11.8 Predictions -- 11.8.1 Purpose -- 11.8.2 Linear Prediction -- 11.8.3 Mean Squared Error Minimization -- 11.8.4 Computation of Probability of an Observation Sequence -- 11.8.5 Forward and Backward Prediction -- 11.8.6 Forward-Backward Prediction -- 11.9 Background Information -- 11.10Exercises -- 12 Unsupervised Learning -- 12.1 Generalities -- 12.2 Clustering Principles -- 12.3 Cluster Analysis Methods -- 12.4 Special Methods -- 12.4.1 K-means -- 12.4.2 Vector Quantization (VQ) -- 12.4.3 Expectation Maximization (EM) -- 12.4.4 GMM Clustering -- 12.5 Background Information -- 12.6 Exercises -- xiv Contents -- 13 Markov Model and Hidden Stochastic Model -- 13.1 Markov Process -- 13.2 Gaussian Mixture Model (GMM) -- 13.3 Advantages of using GMM -- 13.4 Linear Prediction Analysis -- 13.4.1 Autocorrelation Method -- 13.4.2 Yule-Walker Approach -- 13.4.3 Covariance Method -- 13.4.4 Comparison of Correlation and Covariance methods -- 13.5 The ULS Approach -- 13.6 Comparison of ULS and Covariance Methods -- 13.7 Forward Prediction -- 13.8 Backward Prediction -- 13.9 Forward-Backward Prediction -- 13.10Baum-Welch Algorithm -- 13.11Viterbi Algorithm -- 13.12Background Information -- 13.13Exercises -- 14 Fuzzy Logic and Rough Sets -- 14.1 Rough Sets -- 14.2 Fuzzy Sets -- 14.2.1 Basis Elements -- 14.2.2 Possibility and Necessity -- 14.3 Fuzzy Clustering -- 14.4 Fuzzy Probabilities -- 14.5 Background Information -- 14.6 Exercises -- 15 Neural Networks -- 15.1 Neural Network Types -- 15.1.1 Neural Network Training -- 15.1.2 Neural Network Topology -- 15.2 Parallel Distributed Processing -- 15.2.1 Forward and Backward Uses -- 15.2.2 Learning -- 15.3 Applications to Signal Processing -- 15.4 Background Information -- 15.5 Exercises -- Part III Real Aspects and Applications -- Contents xv -- 16 Noisy Signals -- 16.1 Introduction -- 16.2 Noise Questions -- 16.3 Sources of Noise -- 16.4 Noise Measurement -- 16.5 Weights and A-Weights -- 16.6 Signal to Noise Ratio (SNR) -- 16.7 Noise Measuring Filters and Evaluation -- 16.8 Types of noise -- 16.9 Origin of noises -- 16.10Box Plot Evaluation -- 16.11Individual noise types -- 16.11.1Residual -- 16.11.2Mild -- 16.11.3Steady-unsteady Time varying Noise -- 16.11.4Strong Noise -- 16.12Solution to Strong Noise: Matched Filter -- 16.13Background Information -- 16.14Exercises -- 17 Reasoning Methods and Noise Removal -- 17.1 Generalities -- 17.2 Special Noise Removal Methods -- 17.2.1 Residual Noise -- 17.2.2 Mild Noise -- 17.2.3 Steady-Unsteady Noise -- 17.2.4 Strong Noise -- 17.3 Poisson Distribution -- 17.3.1 Outliers and Shots -- 17.3.2 Underlying probability of Shots -- 17.4 Kalman Filter -- 17.4.1 Prediction Estimates -- 17.4.2 White noise Kalman filtering -- 17.4.3 Application of Kalman filter -- 17.5 Classification, Recognition and Learning -- 17.5.1 Summary of the used concepts -- 17.6 Principle Component Analysis (PCA) -- 17.7 Reasoning Methods -- 17.7.1 Case-Based Reasoning (CBR) -- 17.8 Background Information -- 17.9 Exercises -- xvi Contents -- 18 Audio Signals and Speech Recognition -- 18.1 Generalities of Speech -- 18.2 Categories of Speech Recognition -- 18.3 Automatic Speech Recognition -- 18.3.1 System Structure -- 18.4 Speech Production Model -- 18.5 Acoustics -- 18.6 Human Speech Production -- 18.6.1 The Human Speech Generation -- 18.6.2 Excitation -- 18.6.3 Voiced Speech -- 18.6.4 Unvoiced Speech -- 18.7 Silence Regions -- 18.8 Glottis -- 18.9 Lips -- 18.10Plosive Speech Source -- 18.11Vocal-Tract -- 18.12Parametric and Non-Parametric Models -- 18.13Formants -- 18.14Strong Noise -- 18.15Background Information -- 18.16Exercises -- 19 Noisy Speech -- 19.1 Introduction -- 19.2 Colored Noise -- 19.2.1 Additional types of Colored Noise -- 19.3 Poisson Processes and Shots -- 19.4 Matched Filters -- 19.5 Shot Noise -- 19.6 Background Information -- 19.7 Exercises -- 20 Aspects Of Human Hearing -- 20.1 Human Ear -- 20.2 Human Auditory System -- 20.3 Critical Bands and Scales -- 20.3.1 Mel Scale -- 20.3.2 Bark Scale -- 20.3.3 Erb Scale -- 20.3.4 Greenwood Scale -- 20.4 Filter Banks -- 20.4.1 ICA Network -- 20.4.2 Auditory Filter Banks -- 20.4.3 Filter Banks -- Contents xvii -- 20.4.4 Mel Critical Filter Bank -- 20.5 Psycho-acoustic Phenomena -- 20.5.1 Perceptual Measurement -- 20.5.2 Human Hearing and Perception -- 20.5.3 Sound Pressure Level (SPL) -- 20.5.4 Absolute Threshold of Hearing (ATH) -- 20.6 Perceptual Adaptation -- 20.7 Auditory System and Hearing Model -- 20.8 Auditory Masking and Masking Frequency -- 20.…”
    Format: Electronic eBook
    Full text (Wentworth users only)
  5. 142405

    Advanced control of power converters : techniques and MATLAB/Simulink implementation by Komurcugil, Hasan, Bayhan, Sertac, Guzman, Ramon (Professor), Malinowski, Mariusz (Electrical engineer), Abu-Rub, Haithem

    Hoboken, New Jersey : John Wiley & Sons, Inc., 2023
    Table of Contents: “…About the Authors xiii -- List of Abbreviations xvii -- Preface xix -- Acknowledgment xxi -- About the Companion Website xxiii -- 1 Introduction 1 -- 1.1 General Remarks 1 -- 1.2 Basic Closed-Loop Control for Power Converters 3 -- 1.3 Mathematical Modeling of Power Converters 4 -- 1.4 Basic Control Objectives 6 -- 1.4.1 Closed-Loop Stability 6 -- 1.4.2 Settling Time 10 -- 1.4.3 Steady-State Error 11 -- 1.4.4 Robustness to Parameter Variations and Disturbances 12 -- 1.5 Performance Evaluation 12 -- 1.5.1 Simulation-Based Method 12 -- 1.5.2 Experimental Method 13 -- 1.6 Contents of the Book 13 -- References 15 -- 2 Introduction to Advanced Control Methods 17 -- 2.1 Classical Control Methods for Power Converters 17 -- 2.2 Sliding Mode Control 18 -- 2.3 Lyapunov Function-Based Control 22 -- 2.3.1 Lyapunov's Linearization Method 23 -- 2.3.2 Lyapunov's Direct Method 24 -- 2.4 Model Predictive Control 27 -- 2.4.1 Functional Principle 27 -- 2.4.2 Basic Concept 28 -- 2.4.3 Cost Function 29 -- References 30 -- 3 Design of Sliding Mode Control for Power Converters 33 -- 3.1 Introduction 33 -- 3.2 Sliding Mode Control of DC-DC Buck and Cuk Converters 33 -- 3.3 Sliding Mode Control Design Procedure 44 -- 3.3.1 Selection of Sliding Surface Function 44 -- 3.3.2 Control Input Design 46 -- 3.4 Chattering Mitigation Techniques 48 -- 3.4.1 Hysteresis Function Technique 48 -- 3.4.2 Boundary Layer Technique 49 -- 3.4.3 State Observer Technique 50 -- 3.5 Modulation Techniques 51 -- 3.5.1 Hysteresis Modulation Technique 51 -- 3.5.2 Sinusoidal Pulse Width Modulation Technique 52 -- 3.5.3 Space Vector Modulation Technique 53 -- 3.6 Other Types of Sliding Mode Control 54 -- 3.6.1 Terminal Sliding Mode Control 54 -- 3.6.2 Second-Order Sliding Mode Control 54 -- References 55 -- 4 Design of Lyapunov Function-Based Control for Power Converters 59 -- 4.1 Introduction 59 -- 4.2 Lyapunov-Function-Based Control Design Using Direct Method 59 -- 4.3 Lyapunov Function-Based Control of DC-DC Buck Converter 62 -- 4.4 Lyapunov Function-Based Control of DC-DC Boost Converter 67 -- References 71 -- 5 Design of Model Predictive Control 73 -- 5.1 Introduction 73 -- 5.2 Predictive Control Methods 73 -- 5.3 FCS Model Predictive Control 75 -- 5.3.1 Design Procedure 76 -- 5.3.2 Tutorial 1: Implementation of FCS-MPC for Three-Phase VSI 80 -- 5.4 CCS Model Predictive Control 86 -- 5.4.1 Incremental Models 86 -- 5.4.2 Predictive Model 88 -- 5.4.3 Cost Function in CCSMPC 92 -- 5.4.4 Cost Function Minimization 93 -- 5.4.5 Receding Control Horizon Principle 96 -- 5.4.6 Closed-Loop of an MPC System 97 -- 5.4.7 Discrete Linear Quadratic Regulators 97 -- 5.4.8 Formulation of the Constraints in MPC 99 -- 5.4.9 Optimization with Equality Constraints 103 -- 5.4.10 Optimization with Inequality Constraints 105 -- 5.4.11 MPC for Multi-Input Multi-Output Systems 108 -- 5.4.12 Tutorial 2: MPC Design For a Grid-Connected VSI in dq Frame 109 -- 5.5 Design and Implementation Issues 112 -- 5.5.1 Cost Function Selection 112 -- 5.5.1.1 Examples for Primary Control Objectives 113 -- 5.5.1.2 Examples for Secondary Control Objectives 114 -- 5.5.2 Weighting Factor Design 114 -- 5.5.2.1 Empirical Selection Method 115 -- 5.5.2.2 Equal-Weighted Cost-Function-Based Selection Method 116 -- 5.5.2.3 Lookup Table-Based Selection Method 117 -- References 118 -- 6 MATLAB/Simulink Tutorial on Physical Modeling and Experimental Setup 121 -- 6.1 Introduction 121 -- 6.2 Building Simulation Model for Power Converters 121 -- 6.2.1 Building Simulation Model for Single-Phase Grid-Connected Inverter Based on Sliding Mode Control 122 -- 6.2.2 Building Simulation Model for Three-Phase Rectifier Based on Lyapunov-Function-Based Control 126 -- 6.2.3 Building Simulation Model for Quasi-Z Source Three-Phase Four-Leg Inverter Based on Model Predictive Control 131 -- 6.2.4 Building Simulation Model for Distributed Generations in Islanded AC Microgrid 137 -- 6.3 Building Real-Time Model for a Single-Phase T-Type Rectifier 142 -- 6.4 Building Rapid Control Prototyping for a Single-Phase T-Type Rectifier 154 -- 6.4.1 Components in the Experimental Testbed 155 -- 6.4.1.1 Grid Simulator 155 -- 6.4.1.2 A Single-Phase T-Type Rectifier Prototype 156 -- 6.4.1.3 Measurement Board 157 -- 6.4.1.4 Programmable Load 158 -- 6.4.1.5 Controller 158 -- 6.4.2 Building Control Structure on OP- 5707 158 -- References 162 -- 7 Sliding Mode Control of Various Power Converters 163 -- 7.1 Introduction 163 -- 7.2 Single-Phase Grid-Connected Inverter with LCL Filter 163 -- 7.2.1 Mathematical Modeling of Grid-Connected Inverter with LCL Filter 164 -- 7.2.2 Sliding Mode Control 165 -- 7.2.3 PWM Signal Generation Using Hysteresis Modulation 168 -- 7.2.3.1 Single-Band Hysteresis Function 168 -- 7.2.3.2 Double-Band Hysteresis Function 168 -- 7.2.4 Switching Frequency Computation 170 -- 7.2.4.1 Switching Frequency Computation with Single-Band Hysteresis Modulation 170 -- 7.2.4.2 Switching Frequency Computation with Double-Band Hysteresis Modulation 171 -- 7.2.5 Selection of Control Gains 172 -- 7.2.6 Simulation Study 174 -- 7.2.7 Experimental Study 177 -- 7.3 Three-Phase Grid-Connected Inverter with LCL Filter 180 -- 7.3.1 Physical Model Equations for a Three-Phase Grid-Connected VSI with an LCL Filter 181 -- 7.3.2 Control System 182 -- 7.3.2.1 Reduced State-Space Model of the Converter 183 -- 7.3.2.2 Model Discretization and KF Adaptive Equation 187 -- 7.3.2.3 Sliding Surfaces with Active Damping Capability 188 -- 7.3.3 Stability Analysis 189 -- 7.3.3.1 Discrete-Time Equivalent Control Deduction 189 -- 7.3.3.2 Closed-Loop System Equations 191 -- 7.3.3.3 Test of Robustness Against Parameters Uncertainties 192 -- 7.3.4 Experimental Study 192 -- 7.3.4.1 Test of Robustness Against Grid Inductance Variations 192 -- 7.3.4.2 Test of Stability in Case of Grid Harmonics Near the Resonance Frequency 196 -- 7.3.4.3 Test of the VSI Against Sudden Changes in the Reference Current 196 -- 7.3.4.4 Test of the VSI Under Distorted Grid 198 -- 7.3.4.5 Test of the VSI Under Voltage Sags 198 -- 7.3.5 Computational Load and Performances of the Control Algorithm 199 -- 7.4 Three-Phase AC-DC Rectifier 200 -- 7.4.1 Nonlinear Model of the Unity Power Factor Rectifier 200 -- 7.4.2 Problem Formulation 202 -- 7.4.3 Axis-Decoupling Based on an Estimator 203 -- 7.4.4 Control System 205 -- 7.4.4.1 Kalman Filter 206 -- 7.4.4.2 Practical Considerations: Election of Q and R Matrices 208 -- 7.4.4.3 Practical Considerations: Computational Burden Reduction 208 -- 7.4.5 Sliding Mode Control 209 -- 7.4.5.1 Inner Control Loop 209 -- 7.4.5.2 Outer Control Loop 210 -- 7.4.6 Hysteresis Band Generator with Switching Decision Algorithm 212 -- 7.4.7 Experimental Study 215 -- 7.5 Three-Phase Transformerless Dynamic Voltage Restorer 224 -- 7.5.1 Mathematical Modeling of Transformerless Dynamic Voltage Restorer 224 -- 7.5.2 Design of Sliding Mode Control for TDVR 225 -- 7.5.3 Time-Varying Switching Frequency with Single-Band Hysteresis 227 -- 7.5.4 Constant Switching Frequency with Boundary Layer 229 -- 7.5.5 Simulation Study 231 -- 7.5.6 Experimental Study 233 -- 7.6 Three-Phase Shunt Active Power Filter 240 -- 7.6.1 Nonlinear Model of the SAPF 240 -- 7.6.2 Problem Formulation 242 -- 7.6.3 Control System 243 -- 7.6.3.1 State Model of the Converter 243 -- 7.6.3.2 Kalman Filter 245 -- 7.6.3.3 Sliding Mode Control 246 -- 7.6.3.4 Hysteresis Band Generator with SDA 247 -- 7.6.4 Experimental Study 248 -- 7.6.4.1 Response of the SAPF to Load Variations 249 -- 7.6.4.2 SAPF Performances Under a Distorted Grid 253 -- 7.6.4.3 SAPF Performances Under Grid Voltage Sags 254 -- 7.6.4.4 Spectrum of the Control Signal 254 -- References 257 -- 8 Design of Lyapunov Function-Based Control of Various Power Converters 261 -- 8.1 Introduction 261 -- 8.2 Single-Phase Grid-Connected Inverter with LCL Filter 261 -- 8.2.1 Mathematical Modeling and Controller Design 261 -- 8.2.2 Controller Modification with Capacitor Voltage Feedback 264 -- 8.2.3 Inverter-Side Current Reference Generation Using Proportional- Resonant Controller 264 -- 8.2.4 Grid Current Transfer Function 266 -- 8.2.5 Harmonic Attenuation and Harmonic Impedance 267 -- 8.2.6 Results 270 -- 8.3 Single-Phase Quasi-Z-Source Grid-Connected Inverter with LCL Filter 277 -- 8.3.1 Quasi-Z-Source Network Modeling 277 -- 8.3.2 Grid-Connected Inverter Modeling 280 -- 8.3.3 Control of Quasi-Z-Source Network 281 -- 8.3.4 Control of Grid-Connected Inverter 281 -- 8.3.5 Reference Generation Using Cascaded PR Control 282 -- 8.3.6 Results 283 -- 8.4 Single-Phase Uninterruptible Power Supply Inverter 287 -- 8.4.1 Mathematical Modeling of Uninterruptible Power Supply Inverter 287 -- 8.4.2 Controller Design 288 -- 8.4.3 Criteria for Selecting Control Parameters 290 -- 8.4.4 Results 292 -- 8.5 Three-Phase Voltage-Source AC-DC Rectifier 298 -- 8.5.1 Mathematical Modeling of Rectifier 298 -- 8.5.2 Controller Design 301 -- 8.5.3 Results 304 -- References 307 -- 9 Model Predictive Control of Various Converters 309 -- 9.1 CCS MPC Method for a Three-Phase Grid-Connected VSI 309 -- 9.1.1 Model Predictive Control Design 310 -- 9.1.1.1 VSI Incremental Model with an Embedded Integrator 310 -- 9.1.1.2 Predictive Model of the Converter 311 -- 9.1.1.3 Cost Function Minimization 312 -- 9.1.1.4 Inclusion of Constraints 313 -- 9.1.2 MATLAB ? …”
    Format: Electronic eBook
    Full text (Wentworth users only)
  6. 142406

    Triumph of the egg by Anderson, Sherwood, 1876-1941

    New York : Four Walls Eight Windows, 1988
    Format: Book


  7. 142407

    Illuminated poems by Ginsberg, Allen, 1926-1997

    New York : Four Walls Eight Windows, 1996
    Format: Book


  8. 142408

    Women in science now : stories and strategies for achieving equity by Munoz, Lisa M. P.

    New York : Columbia University Press, 2023
    Format: Electronic eBook
    Full text (Wentworth users only)
  9. 142409

    You should smile more : how to dismantle gender bias in the workplace by Hudson, Dawn (Public speaker), Krembs, Angelique Bellmer, Lacey, Katie, Marcus, Lori Tauber, Nicholson, Cie, Short, Mitzi

    [Old Saybrook, Connecticut] : Tantor Media, Inc., 2023
    [First edition].
    Format: Electronic Audio
    Streaming audio (Wentworth users only)
  10. 142410

    US policy in southwest Asia : a failure in perspective by Lawrence, Robert G.

    Fort Lesley J. McNair, Washington, D.C. : National Defense University Press, 1984
    Format: Government Document Book


  11. 142411

    George Romney

    [Place of publication not identified] : Illuminations, 2002
    Format: Electronic Video
    Streaming video (Emerson users only)
    Cover image
    Streaming video (Wentworth users only)
  12. 142412

    Dear white people. Season one

    Santa Monica, California : Lions Gate Entertainment, 2018
    Widescreen ed.
    Format: Video

    This item is not available through FLO. Please contact your home library for further assistance.
  13. 142413

    American Military History. Episode 21, Knocking Iraq Out of Kuwait.

    [San Francisco, California, USA] : The Great Courses,; Kanopy Streaming, 2018; 2019
    Format: Electronic Video
    Streaming video (Wentworth users only)
  14. 142414
  15. 142415

    Text Mining Fundamentals by Chandnani, Rahul

    Technics Publications, 2018
    1st edition.
    Format: Electronic Video
    Streaming video (Wentworth users only)
  16. 142416

    The Contact lens.

    Format: Book

    This item is not available through FLO. Please contact your home library for further assistance.
  17. 142417

    Evergreen review reader, 1967-1973

    New York : Four Walls Eight Windows, 1998
    Format: Book


  18. 142418
  19. 142419

    African-American History/Great Speeches.

    [San Francisco, California, USA] : Kanopy Streaming, 2015
    Format: Electronic Video
    Streaming video (Wentworth users only)
  20. 142420

    Life upon these shores : looking at African American history, 1513-2008 by Gates, Henry Louis, Jr

    New York : Alfred A. Knopf, 2011
    Format: Book